
SpanDB: A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid Storage

Hao Chen†‡ Chaoyi Ruan† Cheng Li†∗ Xiaosong Ma‡ Yinlong Xu†ζ

†University of Science and Technology of China
‡Qatar Computing Research Institute, HBKU

ζAnhui Province Key Laboratory of High Performance Computing

Abstract
Key-Value (KV) stores support many crucial applications and
services. They perform fast in-memory processing, but are
still often limited by I/O performance. The recent emergence
of high-speed commodity NVMe SSDs has propelled new KV
system designs that take advantage of their ultra-low latency
and high bandwidth. Meanwhile, to switch to entirely new
data layouts and scale up entire databases to high-end SSDs
requires considerable investment.

As a compromise, we propose SpanDB, an LSM-tree-based
KV store that adapts the popular RocksDB system to utilize
selective deployment of high-speed SSDs. SpanDB allows
users to host the bulk of their data on cheaper and larger SSDs,
while relocating write-ahead logs (WAL) and the top levels
of the LSM-tree to a much smaller and faster NVMe SSD.
To better utilize this fast disk, SpanDB provides high-speed,
parallel WAL writes via SPDK, and enables asynchronous re-
quest processing to mitigate inter-thread synchronization over-
head and work efficiently with polling-based I/O. Our evalua-
tion shows that SpanDB simultaneously improves RocksDB’s
throughput by up to 8.8× and reduces its latency by 9.5-
58.3%. Compared with KVell, a system designed for high-end
SSDs, SpanDB achieves 96-140% of its throughput, with a
2.3-21.6× lower latency, at a cheaper storage configuration.

1 Introduction
Persistent key-value (KV) stores are widely used today
to store data in various formats/sizes for a wide range
of applications, such as online shopping [32], social net-
works [12], metadata management [7], etc. The write-friendly
log-structured merge tree (LSM-tree) is widely adopted as
the underlying storage engine by mainstream KV stores,
such as RocksDB [1], LevelDB [28], Cassandra [23], and
X-Engine [32]. It remains appealing as production KV envi-
ronments are often found write-intensive [9, 14, 25, 32, 46],
especially due to aggressive memory caching [11, 50, 53].

∗{cighao, rcy, chengli7, ylxu}@ustc.edu.cn, xma@hbku.edu.qa. Cheng
Li is the corresponding author.

The recent availability of fast, commodity NVMe SSDs
can bring dramatic KV performance boosts, as demonstrated
by recent systems, such as KVell [46] and KVSSD [40]. By ei-
ther discarding the LSM-tree data structures designed for hard
disks or offloading KV data management to specialized hard-
ware, these systems provide high throughput and scalability,
with the entire dataset hosted on high-end devices.

This work, instead, aims at adapting mainstream LSM-tree
based KV design to fast NVMe SSDs and I/O interfaces, with
a special focus on cost-effective deployment in production
environments. This is motivated by our study (Sec 2) showing
that current LSM-tree based KV stores fail to exploit the full
potential of NVMe SSDs. For example, deploying RocksDB
atop Optane P4800X only improves throughput by 23.58%
compared with a SATA SSD for a 50%-write workload. In
particular, the I/O path of common KV store designs severely
under-utilizes ultra-low latency NVMe SSDs, especially for
small writes. For instance, going through ext4 brings a latency
6.8-12.4× higher than via the Intel SPDK interfaces [37].

This hurts particularly write-ahead-logging (WAL) [52],
crucial for data durability and transaction atomicity, which
sits on the critical path of writes and is bottleneck-prone [31].
Second, existing KV request processing assumes slow devices,
with workflow designs embedding high software overhead or
wasting CPU cycles if switched to fast, polling-based I/O.

In addition, new NVMe interfaces come with access con-
straints (such as requiring binding the entire device for SPDK
access, or recommending pinning threads to cores). This com-
plicates KV design to utilize high-end SSDs for different
types of KV I/O, and renders current common practices, such
as synchronous request processing less efficient.

Finally, top-of-the-line SSDs like the Optane are costly for
large-scale deployment. As large, write-intensive KV stores
inevitably possess large fractions of cold data, to host all data
on these relatively small and expensive devices is likely be-
yond the budget of users or cloud database service providers.

Targeting these challenges, we propose SpanDB, an LSM-
tree based KV system that adopts partial deployment of high-
end NVMe SSDs. It is based on a comprehensive analysis of

bottlenecks/challenges in porting a popular KV store to use
SPDK I/O (Sec 2), and contains the following innovations:

• It scales up the processing of all writes and reads of more
recent data by incorporating a relatively small yet fast speed
disk (SD), while scaling out data storage on one or more
larger and cheaper capacity disks (CD).

• It enables fast, parallel accesses via SPDK to better utilize
the SD, bypassing the Linux I/O stack and allowing high-
speed WAL writing in particular. (To our best knowledge,
this is the first work studying SPDK support for KV stores.)

• It devises an asynchronous request processing pipeline
suitable for polling-based I/O, which removes unneces-
sary synchronization, aggressively overlaps I/O wait with
in-memory processing, and adaptively coordinates fore-
ground/background I/O.

• It strategically and adaptively partitions data according to
the actual KV workload, actively involving the CD for its
I/O resources, especially bandwidth, to help share the write
amplification common in contemporary KV systems.

We implement SpanDB as an extension to Facebook’s
RocksDB [1], a leading KV store deployed in many pro-
duction systems [2, 5]. SpanDB re-designs RocksDB’s KV
request processing, storage management, and group WAL
writing to utilize fast SPDK interfaces, and retains RocksDB’s
data structures and algorithms, such as LSM-tree organiza-
tion, background I/O mechanism, and transaction support fea-
tures. Therefore its design stays complementary to many other
RocksDB optimizations [9, 10, 17, 48, 57]. Existing RocksDB
databases can be migrated to SpanDB when an SD is added.

Our evaluation using YCSB and LinkBench shows that
SpanDB significantly outperforms RocksDB in all categories
(throughput, average latency, and tail latency) in all test cases,
especially write-intensive ones. Against KVell, a recent sys-
tem designed to leverage high-end SSDs, SpanDB delivers
higher throughput in most cases (at a fraction of KVell’s la-
tency), without sacrificing transaction support.

2 Background and Motivation
2.1 LSM-tree based KV Stores
Overall architecture. LSM-tree based KV stores organize
on-disk data in levels, denoted as L0, L1, ..., Lk, with capacity
generally growing by 10× between adjacent levels except L0.
KV pairs are stored in Static Sorted Tables (SSTs), each an
immutable file. To avoid data loss/inconsistency, a sequential
write-ahead-log (WAL) file, often sized around tens of GBs, is
maintained on persistent storage. Updates are logged there be-
fore being made visible, upon the completion of a write opera-
tion/transaction. In-memory updates are made in MemTables,
one active while the rest are immutable. The active MemTable
accommodates updates and becomes immutable when full,
whereupon one or more immutable MemTables need to be
flushed to make space for a new active one.

EnQue
Win as
leader

WaitEnQue

Make
group

Batch
writes

Wake up
followers

Insert to
memtable

EnQue

Wait
all

finish

Exit Insert to
memtable

Wait

EnQue Wait

Insert to
memtable

Make
group

…

Transition to leader

Wakeup

Wakeup

Thrd 1

Thrd 2

Thrd 4

1 2 3 4 5 6 7 8

…

Thrd 3

Figure 1: RocksDB group WAL write workflow

Foreground write/read. Upon the arrival of a write opera-
tion/transaction, to avoid data loss/inconsistency, its updates
(along with associated metadata) must be first appended to
a WAL file on persistent storage. Then, the corresponding
changes made to the database can be applied to the active
MemTable for subsequent visits. Given that failures are com-
mon on typical KV platforms today [18,20,26,62], WAL [52]
remains an integral part of customer facing databases and sits
on the critical path of processing write requests.

User reads may generate random accesses at multiple tree
levels, until the target key hits at a certain level or misses
all the way. Though production KV systems today greatly
improve average read performance through aggressive in-
memory caching [11, 25, 50, 53, 60], disk I/O cannot be
avoided, especially with larger databases or lower access local-
ity. The inevitable accesses to slow storage contribute heavily
to tail latency and may affect the overall performance.
Background flush and compaction. These include (1) flush,
where an immutable MemTable is written to an L0 SST file
(often making L0 temporarily larger than L1), and (2) com-
paction, where SST files selected from a level Li are read and
merged with SSTs of overlapping key ranges at level Li+1,
with invalid KV pairs removed. The former is triggered by the
number of immutable MemTables reaching a limit, and the
latter by a level becoming full. Both operations create large,
sequential I/O, whose impact on foreground request process-
ing manifests in I/O contention and write stalls (when user
writes need to wait for flushes to empty MemTable space).
Foreground-background coordination. RocksDB and Lev-
elDB control the rate of background I/O through a user-
configurable number of flush/compaction threads. They are
activated when there are background I/O tasks, sleeping other-
wise. Researchers have noted the performance impact of back-
ground thread settings and proposed related optimizations [9].
However, existing solutions still retain the background thread
design, assuming slow I/O and interrupt-based synchroniza-
tion, which does not work well with new, polling-based I/O
interfaces (to be discussed below).

2.2 Group WAL Writes

The current common practice in writing WAL is group log-
ging, which batches multiple write requests for one log data
write [27, 30, 54, 76]. This technique is widely adopted by

mainstream databases today, including MySQL [4], Mari-
aDB [3], RocksDB [1], LevelDB [28], and Cassandra [44].
Beside fault tolerance, group logging also offers better write
performance on slow storage devices (where random accesses
tend to be even slower), by promoting sequential writes.

Fig 1 illustrates the RocksDB/LevelDB group logging
workflow. The WAL write process is sequential: at any time,
at most one group is writing to the log. When there is an
ongoing write, worker threads handling write requests form a
new group by joining a shared queue, with the first en-queued
thread designated the group’s leader (1 - 3). The leader
(Thread 1 in this case) collects log entries from peers, until
notified to proceed by the leader of the previous group, who
just finished writing. This closes the door for the current group
and subsequently arriving threads will start a new one.

The leader writes log entries to persistent storage in a sin-
gle synchronous I/O step (using fsync/fdatasync, 4). The
leader then wakes up group members to actuate updates in
MemTables, making such writes visible to subsequent re-
quests (5 - 6). It finalizes the group commit by advancing
the last visible sequence to the latest sequence number among
its entries (7), disbanding the group (8), and passing the
green light to the next leader (Thread 4).

With high-end NVMe SSDs and faster I/O interfaces (de-
tails in Section 2.3), the group write time (4) is dramatically
reduced. Meanwhile, batching writes still helps by consoli-
dating small requests. Consequently, the software overhead
caused by the synchronous group logging rises to render
most of the threads wasting their time on different types of
wait (steps 1 - 3 and 7). For example, we measured that
RocksDB spends, on average, 68.1% of write request process-
ing time on these 4 steps on a SATA SSD accessed via ext4,
which grows to 81.0% on Optane via SPDK.

2.3 High-Performance SSDs Interfaces
Recent high-end commodity SSDs, such as Intel Optane [36],
Toshiba XL-Flash [63], and Samsung Z-SSD [59], offer low
latency and high throughput [66]. Recognizing that the Linux
kernel I/O stack overhead is no longer negligible in total
I/O latency [45, 69], Intel developed SPDK (Storage Per-
formance Development Kit) [37, 69], a set of user-space li-
braries/tools for accessing high-speed NVMe devices. SPDK
moves drivers into user space, avoiding system calls and en-
abling zero-copy access. It polls hardware for completion
instead of using interrupts and avoids locks in the I/O path.
Here we summarize SPDK performance behavior and policy
restrictions found relevant to KV stores in this work.
SPDK overall performance. We benchmarked two modern
NVMe SSDs, Intel Optane P4800X and P4610. Fig 2 gives
Optane results for request type/size combinations, simulating
typical LSM-tree based KV I/O as described earlier (P4610
results show similar trends). We use write calls for ext4
(each followed with fdatasync), and the SPDK build-in perf
tool (spdk_nvme_perf) for SPDK.

4K-RR 64K-SR 4K-SW 64K-SW

(a) Bandwidth

0

500

1000

1500

2000

2500

B
a

n
d

w
id

th
 (

M
B

/s
)

4K-RR 64K-SR 4K-SW 64K-SW

(b) Latency

0

200

400

600

800

L
a

te
n

c
y

 (
u

s
) ext4

SPDK

Figure 2: Optane P4800X performance via ext4 and SPDK at
different request sizes by 16 threads. “RR”, “SR”, and “SW”
stand for random read, sequential read, and sequential write,
respectively.

1-N 2-N 3-N 1-O 2-O 3-O

(a) Throughput

0

200

400

600

IO
P

S
 (

K
)

1-N 2-N 3-N 1-O 2-O 3-O

(b) Latency

0

5

10

15

20

25

L
a
te

n
c
y
 (

u
s
)

CR=1 CR=2 CR=3 CR=4

Figure 3: Concurrency evaluation w. 4KB sequential writes

For large sequential reads, going through a file system
(as done by current KV stores) actually matches SPDK re-
sults. 4KB sequential writes (WAL-style) via ext4, meanwhile,
achieve a small fraction of the hardware potential, with la-
tency 4.05× higher than SPDK (IOPS accordingly lower).
The 4KB random read and 64KB sequential write tests see
ext4-SPDK gaps between these extremes. Such results high-
light that SPDK may bring significant improvement to KV
I/O, especially for logging and write-intensive workloads.
SPDK concurrency. To assess SPDK’s capability of serv-
ing concurrent sequential writes, we profile individual SPDK
requests, and find the bulk of the 7-8µs single-thread latency
indeed occupied by busy-wait, which grows with more threads
concurrently writing, due to slower I/O under contention.

We then devise a pipeline scheme, where each thread man-
ages multiple concurrent SPDK requests. It allows to “steal”
I/O wait time to issue new requests and check the completion
status of outstanding ones (each taking under 1µs).

Fig 3 gives latency and throughput results on the Intel
P4610 (N) and Intel Optane (O) SSDs. We vary the number
of threads (“3-N” having 3 threads writing to SSD N) and the
upper limit for concurrent requests per thread (“CR=2” having
each thread issuing up to 2 requests). NVMe SSDs do offer
parallelism beyond utilized by the current RocksDB/LevelDB
single-WAL-writer design. In particular, Optane (O) shows
higher concurrency than P4610 (N), with slower latency and
faster throughput growth with more writers. However, even
with O, going beyond 3 concurrent writers does not provide
higher SPDK IOPS: Using 3 loggers each with CR=3 appears
to offer peak WAL speed, which we denote as 3L3R. N, on
the other hand, saturates at 2L4R.
SPDK access restrictions. The performance benefit of fast

!"#$%& '(")!

!*%+,-#-./0!,"#1/,-#-./

!"#$
%&'()*+,)-./001

!"#2(3"#-45($$%&' ()*+,

2#3#)22!)"#4!)%5(0*+,)-&6/1!' 789:;<)22!,)=>'*+,)-.&&.

?!
!"#$%&'

!"(#)&'

!

678

#9/#

2!

)5:/,;<;4/3

=33>4#?:/,@'; @>4#?:/,@'

$%&'

@!

@"

@#

@$
@%
@&

7;<$-,9/A>/;4,"9(-/;;5$1

!"#$%&'()*++$,+-+,./"))"0$%&'()*++$,+-+,.

!"#%&'

!"(#%&'

!"#$*&'

Figure 4: SpanDB storage overview. The dimmed (grey) com-
ponents reuse RocksDB implementation

SPDK-enabled access to high-end NVMe SSDs comes with
strings attached: once an SSD is bound to SPDK by one
process, it cannot be accessed by others, either via SPDK
or via the Linux I/O stack. This simplifies inter-workload
isolation associated with user-level accesses, but also disables
partial deployment of file systems to an SSD accessed via
SPDK. In addition, users are recommended to bind SPDK-
accessing threads to specific cores [22]. We verified that not
doing so brings significant I/O performance loss. This, plus
the polling-based I/O mode, renders the common practice
of using background flush/compaction threads unsuitable for
SPDK accesses: unbound threads suffer slow I/O, while bound
threads cannot easily yield core resources when idle.

3 SpanDB Overview
Design rationale. We propose SpanDB, a high performance,
cost-effective LSM-tree based KV store using heterogeneous
storage devices. SpanDB advocates the use of a small, fast,
and often more expensive NVMe SSD as a speed disk (SD),
while deploying larger, slower, and cheaper SSD (or arrays
of such devices) as the capacity disk (CD). SpanDB uses the
SD for two purposes: (1) WAL writes and (2) storing the top
levels of the RocksDB LSM-tree.

As WAL processing cost is user-visible and directly im-
pacts latency, we reserve enough resources (cores and concur-
rent SPDK requests, plus sufficient SPDK queues), to maxi-
mize its performance. Meanwhile, WAL data only needs to be
maintained till the corresponding flush operation and typically
require GBs of space, while today’s “small” high-end SSDs,
such as Optane, offer over 300GB. This motivates SpanDB
to move the top levels of the RocksDB LSM-tree to the SD.
This also offloads a significant amount of flush/compaction
traffic from the CD, where the bulk of colder data resides.
SpanDB architecture. Fig 4 gives a high-level view of
SpanDB storage structure. Within DRAM, it retains the
RocksDB MemTable design, with one mutable and multi-
ple immutable MemTables. Note that SpanDB introduces no

modifications to RocksDB’s KV data structures, algorithms,
or operation semantics. The major difference here lies in its
asynchronous processing model (Sec 4.1), to reduce synchro-
nization overhead and adaptively schedule tasks.

On-disk data are distributed across the CD and SD, two
physical storage partitions. The SD is further partitioned, with
a small WAL area and the rest of its space used as a data
area. SpanDB manages the SD as a raw device via SPDK
and redesigns the RocksDB group WAL writes (Sec 4.2),
for fast, parallel logging, improving logging bandwidth by
10×. The data area manages raw SSD pages to host the top
levels of the LSM-tree (Sec 4.3). To minimize changes to
RocksDB, here SpanDB implements TopFS, a lightweight
file system (including its own cache), which allows easy and
dynamic level relocation. The CD partition, meanwhile, stores
the “tree stump”, often containing the colder majority of data.
Its management remains unchanged from RocksDB, accessed
via a file system and assisted by the OS page cache.

Fig 4 also depicts the different types of SpanDB I/O traffic.
While the SD WAL area is dedicated to logging, its data area
receives all flush operations, which write entire MemTables
to L0 SST files. In addition, both SD data area and CD ac-
commodate user reads and compaction reads/writes, where
SpanDB performs additional optimization to enable simulta-
neous compaction on both partitions and automatically co-
ordinate foreground/background tasks. Finally, SpanDB is
capable of dynamic tree level placement based on real-time
bandwidth monitoring of both partitions.
Sources of performance benefits. SpanDB improves LSM-
tree based KV store design in multiple ways:

• By adopting a small yet fast SD accessed via SPDK, it
speeds up WAL by fast, parallel WAL writes.

• By using the SD also for data storage, it optimizes the
bandwidth utilization of such fast SSDs.

• By enabling workload-adaptive SD-CD data distribution, it
actively aggregates I/O resources available across devices
(rather than using CD only as an “overflow layer”).

• Though mainly optimizing writes, by offloading I/O to the
SD, it reduces tail latency with read-intensive workloads.

• By trimming synchronization and actively balancing fore-
ground/background I/O demands, it exploits fast polling
I/O while saving CPU resources.

Limitations. We recognize two limitations with SpanDB’s
approach: (1) due to the aforementioned SPDK access con-
straint, the SD needs to be bound to one process, making
it hard to share this resource; (2) for all-read workloads,
SpanDB produces little speedup and introduces slight over-
head in asynchronous processing.

4 Design and Implementation
4.1 Asynchronous Request Processing
KV stores like RocksDB and LevelDB (plus many new sys-
tems based on them [8–10, 13, 17, 48, 51, 57, 73]) use embed-

! !

"#$%&'(

!"#$%#&

!"#$

)*'$+*,-*.'$/0123*'&04$.'5'-.

6*57

2+0/*..&48

9+&'*

/0123*'&04

:+0-2

3088&48

9+&'*

2+0/*..&48

!!"#$
!%&'()*

!+,)()* !()*

'!"#$%

'&'()*+,

;3-.%<

=012/'>

()*%+,&

A_get

A_check

A_put

)254?@

A

B

-"..%#

Figure 5: Asynchronous request processing workflow

ded DB processing, where all foreground threads assume the
“client” role, each synchronously processing one KV request
at a time. With such processing often being I/O-bound (espe-
cially with WAL writes), users typically obtain higher overall
throughput (requests per second) by thread-overprovisioning,
having more client threads than cores. With fast NVMe SSDs
and interfaces such as SPDK, as discussed in Section 2.3,
thread synchronization (such as sleep and wakeup) could
easily take longer than an I/O request. In this case, thread
overprovisioning not only trades off latency, but also reduces
overall resource utilization and consequently throughput.

In addition, with polling-based SPDK I/O, having threads
co-exist on the same cores loses the appeal of improving
CPU utilization during I/O waits. This also applies to the
common practice of managing LSM-tree flush/compaction
tasks using background threads. In particular, as “fsync” with
SPDK I/O involves busy-wait, the existing RocksDB design
of unleashing potentially many background threads would
create huge disruption to other threads and waste CPU cycles.

Recognizing these, SpanDB adopts asynchronous request
processing, as illustrated in Fig 5. On an n-core machine,
users configure the number of client threads as Nclient , each
occupying one core. The remaining (n−Nclient) cores host
SpanDB internal server threads, internally partitioned into
two roles: loggers and workers. All these threads spin
on their assigned cores. Loggers are dedicated to WAL
writes, while workers handle both background processing
(flush/compaction) and non-I/O tasks such as MemTable reads
and updates, WAL entry preparation, and transaction related
locking/synchronization. Based on the write intensity ob-
served, a head-server thread automatically and adaptively
decides the number of loggers, who are bound to cores with
SPDK queue allocation that protect WAL write bandwidth.
Asynchronous APIs. SpanDB provides simple, intuitive
asynchronous APIs. For existing RocksDB synchronous get
and put operations, it adds their asynchronous counterparts
A_get and A_put, plus A_check to examine request status.
Similar API expansion applies to scan and delete. Accord-
ingly, SpanDB expands RocksDB’s status enumeration.

Fig 6 gives a sample client code segment. Here the client
adopts the inherent spirit of asynchronous processing: to over-

Request *req = null;
while(true){
 if(req == null)
 req = GenerateRequest();
 LogsDB->A_put(req->key, req->value, req->status);// issue async req

 if(!(req->status->IsBusy())){
 pending_queue->enqueue (req);
 req = null; // ready to generate next req
 }
 for(Request* r in pending_queue){
 if (A_check(r->status)==completed) { // check outstanding reqs
 pending_queue.remove(r);
 custom_process(r);
 }
 } // end for
} // end while

Figure 6: SpanDB API example

lap wait with active work. It issues A_put requests in a loop,
moving on to check the status of outstanding requests (and
perform proper processing upon their completion), followed
by issuing another request. A new request may be temporar-
ily rejected by SpanDB, via the IsBusy status set within the
A_put call, in which case the client will resubmit later.
SpanDB request processing. SpanDB manages the stages
of foreground request processing, as well as background
flush/compaction tasks in a number of queues. These queues
pass sub-tasks among threads and also provide feedback on a
certain system component’s stress level. Based on such feed-
back, SpanDB could regulate the client request issuing rate
(via the aforementioned IsBusy interface) or dynamically
adjust its internal task allocation among workers.

Fig 5 illustrates the relevant SpanDB task queues. The
flush and compaction queues (QFlush and Qcompact) are from
RocksDB’s existing design, though SpanDB modifies the
actual operations to use SPDK I/O. In addition, SpanDB adds
four queues: one for reads (QRead), and three to break up
writes (QProLog, QLog, and QE piLog).

For asynchronous reads, SpanDB retains the RocksDB syn-
chronous model when a request requires no I/O. With typical
locality in KV applications, many reads are served from the
MemTable, especially with larger MemTables enabled by spa-
cious DRAM today. Given a key, the client quickly checks
whether it is a MemTable hit and if so, completes the read
operation itself. Such a “lucky read” takes only 4-6µs end
to end, as opposed to 30µs on average even when reading
from Optane under contention. Otherwise, the client inserts
the request into QRead and returns. A worker will later pick
it up, completing the rest of the RocksDB read routine and
setting its completion status.

For asynchronous writes, SpanDB breaks its processing
into three parts. The client simply dumps a request into
QProLog, to be processed by a worker. The latter generates
a WAL log entry, which in turn is passed into QLog. Both
queues are designed to promote batched logging (described
in Sec 2.2): a worker/logger would grab all the items in these
queues. Beyond batching, the loggers pipeline log writes, max-
imizing SPDK write concurrency (see Sec 4.2). After writing
a batch to the SD, a logger adds the appropriate requests to
QE piLog, for workers to complete their final processing, in-

cluding the actual MemTable updates. Like reads, tasks here
require individual attention and no speedup can be achieved
from their batching. As seen in Fig 5, QProLog and QLog are
flat lock-free queues, which allow easy “grab all” dequeuing.
The other two, QRead and QE piLog, are circular queues and
only require locks in dequeue operations.
Task scheduling. The above SpanDB queues provide natu-
ral feedback for adjusting internal resource allocation. Our
SPDK benchmarking results (Fig 3) shows that high-end
NVMe SSDs offer parallelism but can be saturated by a
few cores each issuing several concurrent requests. Hence
SpanDB starts with one logger, growing and shrinking this
allocation between 1 and 3 according to the current write in-
tensity. The workers, however, are flexible to work on all the
other queues, both foreground and background. Among the 3
foreground queues, SpanDB performs load balancing based
on their queue length weighted by their average per-task pro-
cessing time. Between the foreground and background queues,
SpanDB prioritizes foreground, with an adaptive threshold
to monitor background queue length, to proactively perform
cleaning up, especially with write-intensive workloads.
Transaction support. SpanDB fully supports transactions
and provides an asynchronous commit interface A_commit
by making a few minor changes to RocksDB. Note that in
RocksDB’s transaction mode, writes will generate WAL en-
tries in an internal buffer, which is only written by the commit
call. The difference here is that A_commit inserts correspond-
ing write tasks into QProLog.

4.2 High-speed Logging via SPDK
Enabling parallelism and pipelining. SpanDB uses SPDK
to flush log entries to raw NVMe SSD devices, bypassing the
file system and Linux I/O stack. It retains the group logging
mechanism described in Sec 2.3, but enables multiple con-
current WAL write streams. Rather than having one client as
leader (and forcing followers to wait), it employs dedicated
loggers, who issue simultaneous batch writes. Each logger
grabs all requests it sees in QLog and aggregates these WAL
entries into as few 4KB blocks as possible. It performs pipelin-
ing by stealing the SPDK busy-wait time for one request to
prepare/check others, as introduced in Sec 2.3. For instance,
with 2L4R, there are up to 8 outstanding WAL write groups.
Log data management. Parallel WAL writes complicate log
data management, especially on a raw device without a file
system. Luckily, with atomic 4KB SPDK writes, coordinating
concurrent WAL streams adds little overhead.

SpanDB allocates a configurable number of logical pages
on the SD to its WAL area (10GB in our evaluation), each with
a unique log page number (LPN). One of them is set aside
as a metadata page. At any time, there is only one mutable
MemTable, whose log “file” grows. We allocate a fixed num-
ber of log page groups, each containing consecutive pages
and large enough to hold logs for one MemTable. Occupied
log pages are organized by their corresponding MemTables:

Figure 7: SpanDB’s parallel WAL logging mechanism

SpanDB conveniently reuses the RocksDB MemTable’s “log
file number” field as a log tag number (LTN), embedded at
the beginning of all log pages for recovery.

Fig 7 gives an example of having four MemTables, one
mutable (active) and three immutable, with different status
(“A” for “active” and “I” for “inactive”) in the metadata page.
The long stripes in the bottom show two of the log page groups
allocated. After a MemTable is flushed, its entire stripe of log
pages is recycled, guaranteeing a MemTable’s contiguous log
storage. For each immutable MemTable, the metadata page
records the start and end LPN of its log pages. Given that
typical KV stores use a small number of MemTables, one
page is more than enough to hold such metadata.

With loggers issuing concurrent requests, each supplying a
WAL data buffer and size, the only synchronization point is
log page allocation. We implement lightweight atomic page
allocation with compare-and-swap (CAS) operations. Fig 7
shows 3 requests allocated 1, 3, and 2 pages, respectively,
who can then proceed in parallel. These WAL writes do not
modify the metadata page, where the per-MemTable end LPN
is only appended when that MemTable becomes immutable.

Within a log page, the logger first records the current LTN,
followed by a set of log entries, each annotated with its size.
The zoom-in part in Fig 7 portraits such layout, including the
per-entry checksum (already calculated in RocksDB).
Correctness. SpanDB’s parallel WAL write design preserves
the RocksDB consistency semantics. It does not change the
concurrency control mechanism used to coordinate and order
client requests. Therefore, transactions with happened-before
restrictions never appear out of order in the log pages, as
briefly explained below. RocksDB’s default isolation guar-
antee is READ COMMITTED. It also checks write-write con-
flicts and serializes two concurrent transactions that simulta-
neously update common KV items. With these two isolation
guarantees, for any two update transactions T1 and T2, READ
COMMITTED implies that if T1 happens before T2 (i.e., T2 sees
the effects of T1), then T1 must commit before T2 started. By
the design of the RocksDB group WAL write protocol, the
above implies that the log entries of T1 and T2 should appear
in two batches, where the batch commit of T1 arrive earlier
than and complete before the one of T2. While log batches

are written in parallel with SpanDB, they pass a serialization
point for atomic page allocation. Therefore T1’s batch is still
guaranteed to obtain a lower sequence number than the one
of T2, for the latter to see the updates of the former. Similarly,
When recovering from WAL data, SpanDB always performs
redo in ascending order of sequence numbers.
Log recovery. Recovery is rather straightforward. When
rebooting from a crash, the recovery process first reads the
metadata page, to retrieve the number of log page groups and
their corresponding page address ranges. The actual recovery
from a log page group is highly similar to RocksDB’s from a
log file. Again the LTN number in each page helps identify
the “end” of the active log page group.

However, the one complication we find is that as SpanDB
recycles log page groups, which contain old log pages, during
recovery SpanDB needs to know which pages of the current
log group have been overwritten. RocksDB relies on the file
system during recovery: it reads whatever data is contained
in the active log file. Without the file system, SpanDB could
persist a separate metadata update or wipe out old log pages
(e.g., by writing 0s) before recycling them. Both approaches
double the WAL I/O volume and cut the SD’s effective WAL
write bandwidth in half. Instead, we reuse the per-MemTable
LTN as a log page “color”. Since the SSDs can guarantee 4K
atomic writes to the device and the LTN is always written
at the beginning of a page, the pages themselves reveal the
location of the last successful writes. Recall the metadata
page maintains the current/active LTN (the one with status
“A”) – a page within this group but with an obsolete LTN has
not yet been overwritten from the current MemTable.

4.3 Offloading LSM-tree Levels to SD
For sustained, balanced execution of KV servers, SpanDB
migrates the top levels of the RocksDB LSM-tree to the SD,
offering users more return from their hardware investment. Be-
low we discuss the major challenges and solutions involved.
Data area storage organization. One constraint in using
SPDK on an NVMe SSD is that the whole device has to
be unbound from the native kernel drivers, and cannot be
accessed through the conventional I/O stack. Therefore one
cannot partition the SD, to use SPDK only for writing WAL
to one area and install a file system on the other.

To minimize modifications to RocksDB I/O, SpanDB im-
plements TopFS, a stripped-down file system, providing fa-
miliar file interface wrappers on top of SPDK I/O. The SST
files’ append-only and thereafter immutable nature, plus their
single-writer access pattern, simplifies the TopFS design. For
example, file sizes are known at creation (for flush, with an
immutable MemTable’s size fixed) or have a known limit (for
compaction). Also, each SST file is written in entirety once,
by a single thread, from either flush or compaction. In both
cases, the input data are not deleted till the SST file write
successfully completes. In addition, TopFS does guarantee
data persistence upon file close. These enable the allocation

of per-file contiguous LPN ranges, similar to the aforemen-
tioned log page groups. Metadata management is then simple:
a hash table, indexed by file name, stores the files’ start and
end LPNs. TopFS manages space allocation using an LPN
free list, where contiguous LPN ranges are merged.
Ensuring WAL write priority. While flush/compaction
could eventually block foreground writes if neglected long
enough, in most cases, their latency remains hidden from
users. Therefore the SD should ideally utilize the residual
bandwidth available, but yield to WAL writes, whose latency
is fully visible to users. SPDK provides enough NVMe queue
pairs (each composed of one submission and one completion
queue): 31 on Intel Optane P4800X and 128 on Intel P4610.
This enables separate management of different request types.
Unfortunately, none of the existing commodity SSDs imple-
ment priority management over these queues [29]. Also, these
queues offer very limited operations: users could only issue
requests and check completion status.

Therefore, besides the foreground-background coordina-
tion done at its queues (Section 4.1), SpanDB needs to prior-
itize WAL requests. We found their priority could be effec-
tively protected by (1) allocating dedicated queues to each
logger request slot (i.e., 8 queues for L2R4), (2) reducing the
flush/compaction I/O request size from the RocksDB default
of 1MB to 64KB to minimize their I/O contention with WAL,
and (3) limiting the number of worker threads assigned to
perform flush/compaction.
SpanDB SPDK cache. Another challenge SpanDB faces
is that SPDK bypasses the OS page cache. If unattended,
this brings excellent raw I/O but disastrous application I/O
performance. To overcome this, we implement SpanDB’s
own cache on TopFS. Note that with SPDK I/O, all data
buffers passed must be allocated in pinned memory via
spdk_dma_malloc(). SpanDB reuses such buffers as a
cache, hereby saving additional memory copying.

Upon SpanDB initialization, it allocates a large memory
cache (size configurable) in hugepage. Upon an SST file’s
creation, SpanDB reserves the appropriate number of con-
tiguous 64KB buffers in the cache (recall that the file size
or size limit is known). SpanDB manages this cache using
another hash table, again with the RocksDB SST file name as
the key. The value field is an array storing the cache entry for
each file block, storing the appropriate memory address if the
block is cached, otherwise NULL. The block size configuration
clearly involves a tradeoff between cache data granularity and
metadata overhead. Our evaluation uses the SpanDB default
block size of 64KB, producing a <500KB metadata overhead
for a 100GB database.
Dynamic level placement. With all the above mechanisms,
we can dynamically adjust the number of tree levels residing
on SD. Initially, we pursued an analytical model to directly
compute an optimal SD-CD level partitioning that maximizes
overall system throughput. However, we could not find ac-
curate LSM-tree write amplification models that agree with

our measurement. In particular, state-of-the-art work on this
front [49] seems to not take into account write speed and its
variation. Our tests show that these factors could heavily im-
pact the transient “tree shape” (with the top levels bulging out
at different degrees beyond their size limit) and consequently
the write/read amplification level.

Therefore, SpanDB settles for ad-hoc, dynamic partitioning,
by observing the sustained resource utilization level imbal-
ance between the SD and CD. Its head-server thread monitors
the SD bandwidth usage, and triggers the SST file relocation
when it is below BWL, till either it reaches BWH or the SD is
full, where BWL and BWH are two configurable thresholds.

Rather than migrating data between SD and CD, as the
SST files constantly go through merging, SpanDB gradually
“promotes” or “demotes” a whole level by redirecting their
file creation to a different destination. It has a pointer that
indicates currently which levels should go to the fast NVMe
device. For example, a pointer of 3 covers all top 3 levels.
However, this pointer only determines the destination of new
SST files. Therefore it is possible to have a new L3 file on SD
and an older L2 file on CD, though such “inversions” are rare
as the top levels are smaller and their files are updated more
often.

5 Evaluation
5.1 Experimental Setup

We implemented SpanDB1 on top of RocksDB, with around
6000 lines of C++ code for its core functionality, plus 300
lines for integration with RocksDB.
Platform. We use a server with 2 20-core Xeon Gold 6248
processors and 256GB DRAM, running CentOS 7.7. The
storage setting, denoted in “CD-SD” pairs, involves four data
center device types. Among them, SATA SSDs (Intel S4510,
“S”) are used to form an 4+1 RAID5 group. As SPDK does
not apply to SATA devices, S is used as CD only.

Beside Optane P4800X (“O”), we test two more Intel DC
NVMe SSDs as CD and SD respectively: P4510 (“N1”) and
P4610 (“N2”), the former being larger, cheaper, and with
higher bandwidth. The device details are in Table 1. Finally,
we access CD via ext4, widely adopted in KV stores stud-
ies [13, 17, 51, 57].

Baseline and system configurations. Our natural baseline
is vanilla RocksDB (v6.5.1), the base of SpanDB’s develop-
ment. Unless otherwise stated, all tests with RocksDB and
SpanDB share the following configurations. Considering the
current trend of larger DRAM space in servers, we use four
1GB MemTables, and set the maximum WAL size to 1GB.
RocksDB is set to use up to 6 threads for compaction and 2
for flush. We follow common practice in performance eval-
uation that turns off compression when using synthetically
generated requests [9, 48, 51, 57]. The remaining parameters

1Publicly available at https://github.com/SpanDB/SpanDB

Table 1: Enterprise disks tested (pricing from CDW-G on
09/15/2020). DWPD (Drive Writes Per Day) measures the
times/day one could overwrite an entire drive for its lifetime.
Note that H and S are used in (4+1) RAID5 arrays, while the
listed numbers here are single-disk data.

ID Model Interface Capacity Price Seq. write
bandwidth

Write
latency

Endurance
(DWPD)

S Intel SSD DC
S4510

SATA 960 GB
$248

$0.26/GB
510 MB/s 37 us 1.03

N1 Intel SSD DC
P4510

NVMe 4.0 TB
$978

$0.25/GB
2900 MB/s 18 us 1.03

N2 Intel SSD DC
P4610

NVMe 1.6 TB
$634

$0.40/GB
2080 MB/s 18 us 1.03

O Intel Optane SSD
P4800X

NVMe 375 GB
$1221

$3.25/GB
2000 MB/s 10 us 30

0

200

400

600

800

T
h

p
t

(K
O

P
S

)

PL
LAD-0

LAD-1
LAD-2

LAD-3
Auto

(a) Throughput

0

100

200

300

L
a
te

n
c
y
 (

u
s
)

PL
LAD-0

LAD-1
LAD-2

LAD-3
Auto

(b) Latency

100% Write 50% Write 5% Write

Figure 8: Impact of data placement in SpanDB (S-O steup,
512GB database)

are set to RocksDB default. Additionally, we compare with
two recent key value stores designed for high-performance
SSDs, namely KVell [46] and RocksDB-BlobFS [61].
Workloads and Datasets. We run microbenchmarks and
two popular KV workloads, YCSB [16] and Facebook’s
LinkBench [6]. For most tests with YCSB, we follow com-
mon practice [46, 48, 51] and use 1KB KV item size, loading
a 512GB database with randomly generated keys as the initial
state. The query phase issues 20M requests (preceded by 30%
extra requests for warm-up).

5.2 Microbenchmark Results

Adaptive KV data placement. To assess SpanDB’s auto-
matic LSM-tree level placement, we use 3 YCSB-like work-
loads with different write intensity (Fig 8). We tested a 512GB
database on the S-O device combination. To compare with
SpanDB’s adaptive setting (“Auto”), we configured SpanDB
with different fixed placement options: “PL” (“pure logging”,
where the SD is used solely for WAL writes), and “LAD-n”
(the top n levels of the LSM-tree is placed on the SD). The
left and right charts show request processing throughput and
average latency, respectively.

The results indicate that different workloads see different
configuration sweet points. With a write-only workload, PL
enables the fastest absorption of write bursts, dedicating the
SD to WAL writes. The fixed placement plans (LAD-0 to
LAD-3) deliver lower yet almost uniform performance, due
to that their total data size (27.3GB) is rather small relative
to the total 512GB database. They are slower in writes by

https://github.com/SpanDB/SpanDB

0

500

1000

K
O

P
S

BG-L BG-H Auto

0

200

400

L
a
te

n
c
y
 (

u
s
)

0 20 40 60 80 100 120

Time (s)

0

50

#
 o

f
B

G
 a

c
ti

v
it

ie
s

Phase 1 Phase 2 Phase 3

Figure 9: Impact of SpanDB background I/O configurations
(S-O setup, 512GB database)

0

200

400

600

800

1000

T
h

p
t

(K
O

P
S

)

RocksDB S

RocksDB O

RocksDB SO

RocksDB SPDK_W
AL

SpanDB PL

SpanDB

(a) Throughput

0

200

400

600

L
a

te
n

c
y

 (
u

s
)

RocksDB S

RocksDB O

RocksDB SO

RocksDB SPDK_W
AL

SpanDB PL

SpanDB

(b) Latency

100% Write

50% Write

5% Write

Figure 10: Performance of different RocksDB and SpanDB
configurations (S-O setup, 100GB database)

adding flush/compaction traffic to the SD, while moving one
more or fewer (small) layer here has little impact. Please note
that we cannot evaluate LAD-4 here, as the total database
size (over 300GB), plus the WAL area and the temporary top
tree level growth to accommodate fast writes, would run out
of the usable space of the Optane disk (around 330GB in
our experience). SpanDB’s auto policy here matches the PL
performance by adopting the same placement.

With more read-intensive workloads, using the SD for data
helps by speeding up reads. Again only LAD-3 brings visible
improvement as the previous levels are quite small. SpanDB’s
auto placement, however, roughly doubles throughput and
halves latency from LAD-3. Its dynamic strategy does not
have to migrate an entire tree level: here it ends up moving
about 72% of the L4 data to SD, cutting average read latency
significantly. For the rest of the paper, we evaluate SpanDB
with its auto data placement.
Adaptive background I/O coordination. Here we use a
multi-phase workload to simulate time-varying user behav-
ior common in production environments [32]. It begins with
bursty requests, issuing 1.5M requests at the beginning of
multiple 25-second episodes with 50% writes and 50% reads
(Zipfian key distribution), followed by around 35 seconds of
100% writes, and finally 25 seconds of 95% reads. Fig 9 por-
traits the request throughput, latency, and background activity

level (flush/compaction task counts as reported in RocksDB).
We compare SpanDB’s auto adaptation with two fixed con-

figurations: “BG-L” (RocksDB default, one thread each for
compaction and flush), and “BG-H” (6 compaction and 2
flush threads). During phase 1 (bursty), BG-H performs the
worst, with 2× higher average latency and 39% lower aver-
age throughput than BG-L during each burst. After an initial
period of write accumulation, the foreground tasks become
severely interfered by its aggressive compaction. “Auto” be-
haves quite similarly to BG-L during the write request bursts,
prioritizing foreground tasks. Unlike with the fixed thread
allocation in RocksDB, its background I/O is not constrained
to a few threads. So after the burst passes, SpanDB Auto
loses no time in catching up with background tasks, resulting
in “background compaction bursts” (red peaks in the bottom
figure) much more intense than both BG-L and BG-H. Over-
all, this leads to faster completion of backlogged compaction
tasks, and better preparation for future write bursts.

In the second phase (all-write), BG-L regularly stalls fore-
ground processing, producing dramatic latency/throughput
fluctuations, which does not happen with the more
compaction-conscious BG-H or Auto. With higher back-
ground resource allocation, BG-H still performs worse than
Auto (due to its less pro-active compaction), obtaining slightly
lower throughput and having one write stall. For the last phase
(read-intensive), with light flush/compaction load, BG-L and
Auto achieve nearly identical performance, while BG-H lags
behind in throughput, due to wasting thread allocation (as
required by SPDK to be bound to a core) to background tasks.

This confirms that SpanDB’s asynchronous workflow, de-
signed mainly to reduce software overhead with polling I/O,
also enables adaptive background task scheduling.
Breakdown analysis. Fig 10 breaks down SpanDB’s im-
provement by incrementally enabling its individual tech-
niques, again with workloads at different write intensity. The
first 4 bar groups show variants of RocksDB, while the last 2
of SpanDB. To enable RocksDBO, RocksDB’s execution on a
single fast disk (Optane), we use a smaller database (100GB).
With RocksDBSO, RocksDB uses the SD (O) for WAL and
CD (S) for all data. RocksDBSPDK_WAL uses the same setting,
only with WAL writes via SPDK instead of ext4. SpanDBPL
adds asynchronous processing and parallel WAL writes, while
SpanDB enables auto-placement of data.

From the all-write results, one sees clearly how little
the hardware upgrade matters with RocksDB (RocksDBS
to RocksDBO). Separating logging with data I/O helps
(RocksDBSO), and adopting SPDK further doubles write
throughput. Still, RocksDBSPDK_WAL only unlocks a small
fraction of the Optane disk’s concurrent small write perfor-
mance, as demonstrated by SpanDB (both PL and Auto), who
achieves a 4.5× throughput.

When the workload becomes balanced (50% read), the per-
formance growth becomes less dramatic, though still very sig-
nificant. Here RocksDBS and RocksDBO have almost identical

S-N2 S-O N1-O

0

200

400

600

800

T
h

p
t

(K
O

P
S

)

RocksDB SpanDB

S-N2 S-O N1-O

0

200

400

600

S-N2 S-O N1-O

0

50

100

150

200

S-N2 S-O N1-O

0

200

400

600

S-N2 S-O N1-O

0

50

100

S-N2 S-O N1-O

0

100

200

300

S-N2 S-O N1-O

0

100

200

300

400

L
a

te
n

c
y

 (
u

s
)

S-N2 S-O N1-O

0

100

200

300

S-N2 S-O N1-O

0

200

400

600

S-N2 S-O N1-O

0

50

100

S-N2 S-O N1-O

0

200

400

600

800

S-N2 S-O N1-O

0

100

200

300

400

(a) 100% write (b) YCSB-A, zipfian (c) YCSB-A, uniform (d) YCSB-B (e) YCSB-E (f) YCSB-F

Figure 11: Throughput and latency of various YCSB workloads, 20M requests on 512GB database. (YCSB-A: 50% update and
50% read, YCSB-B: 5% update and 95% read, YCSB-E: 95% scan and 5% insert, YCSB-F: 50% read and 50% read-modify-write)

performance, as adding a CD helps offloading write traffic,
but lowers read speed. SpanDB’s auto version beats the best
RocksDB variant by 2.74×, and nearly doubles the through-
put of its PL version, as the fast SD accelerates reads. With
95%-read (blue bar), RocksDBO stands out among RocksDB
variants, showing that with reads, the vanilla RocksDB on
ext4 actually quite efficiently utilizes the Optane disk (con-
sistent with benchmarking results in Fig 2). SpanDB’s auto
version, in this case, also chooses to place its data on the SD
and matches the RocksDBO performance.

5.3 Overall Performance

We use YCSB and LinkBench to evaluate SpanDB’s overall
performance against RocksDB, on three CD-SD hardware
pairs: S-N2, S-O, and N1-O. Note that RocksDB allows easy
assignment of logging destination, therefore we set it to also
writes WAL to the SD (its LSM-tree levels, however, cannot
be relocated without substantial code change). Hence the
RocksDB baseline evaluated does use both disks in the CD-
SD pair, though via the file system.
YCSB write-intensive tests. As SpanDB primarily targets
write optimization, we start with write-intensive workloads.

With all-write (Fig 11(a)), issuing 20M write requests (Zip-
fian key distribution), RocksDB delivers uniformly low perfor-
mance across all three device pairs. This reveals how existing
systems, logging sequentially via a file system, fail to utilize
high-end SSDs well. From this baseline, SpanDB dramatically
improves both throughput and latency, bringing a throughput
increase of 7.6-8.8× across different CD-SD combinations,
while reducing average latency by 1.5-2×. This higher im-
provement on throughput than on latency is attributed to our
parallel batch logging (both in QProLog and QLog). For exam-
ple, on S-O, the RocksDB log batch size averages around 20.
SpanDB has an average batch size of around 7, but may have
multiple threads process batches in parallel.

Fig 11(b) and Fig 11(c) give results for YCSB-A (50%
reads and 50% updates), with Zipfian and uniform key dis-

tribution, respectively. Having 50% reads, on such a large
database, actually slows down overall request processing, as
reads cannot be batched. Here SpanDB’s improvement over
RocksDB remains significant: improving throughput by 2.6-
4.0× while reducing latency by 2.2-3.0× (Zipfian distribu-
tion). With more reads, both systems are more sensitive to
the underlying storage hardware, and the N1-O combination
excels due to N1’s lower read latency than S. Meanwhile,
compared with RocksDB, SpanDB harvests much more per-
formance gain from this device pair.

With uniform distribution, SpanDB’s edge over RocksDB
is weakened by having more memory cache read misses. Most
data reside on the CD, where SpanDB’s reads work similarly
as the baseline. Still, SpanDB outperforms RocksDB by 1.7-
2.4× in throughput and by 1.9-2.4× in latency.
Other standard YCSB tests. Next, we run the other 3 YCSB
workloads: B, E and F. Due to space limit we give Zipfian
results only, and omit C (no writes) and D (similar to B).

With the 95%-read YCSB-B and YCSB-E (Fig 11(d) and
Fig 11(e)), SpanDB still delivers moderate enhancement:
throughput growth by 1.03×-1.66×, and latency cut by 9.5%-
42%. Between them, it has a smaller gain with YCSB-E, dom-
inated by scan operations and with a higher memory hit ratio
(from reading a random number of consecutive keys). YCSB-
F (Fig 11(f)) contains 50% reads and 50% read-modify-writes.
Though its read ratio (75%) is between YCSB-A and YCSB-
B, it behaves more like YCSB-A (with read-modify-write
dominated by write cost): SpanDB outperforms RocksDB
significantly in both throughput and latency.

Among all tests in Fig 11, except for the most read-intensive
ones (B and E), SpanDB on the lowest device setting (S-N2)
significantly outperforms RocksDB on the highest one (N1-
O), demonstrating its cost-effectiveness. The two 95%-read
workloads highlight the benefit of a low-latency CD, while
SpanDB further boosts performance across all device pairs.

Finally, we report SpanDB’s impact on tail latency. Due to
space limit, here we focus on the read-intensive tests (B, E,

Table 2: Tail latency in YCSB read-intensive tests (S-O)

YCSB-B (Zipf) YCSB-E (Zipf) YCSB-F (Zipf)
RocksDB SpanDB RocksDB SpanDB RocksDB SpanDB

P90 (us) 471.5 277.1 2844.0 1404.1 685.4 261.2
P99 (us) 803.4 507.6 6016.6 4241.6 2801.7 1848.2

S-N2 S-O N1-O

(a) Throughput

0

50

100

150

200

T
h

p
t

(K
T

P
S

)

RocksDB SpanDB

S-N2 S-O N1-O

(b) Latency

0

100

200

300

L
a

te
n

c
y
 (

u
s

)

Figure 12: Performance of LinkBench

and F), on S-O, listing the P90 and P99 request latency in Ta-
ble 2. Though the write-oriented SpanDB produces moderate
overall performance improvement for read-intensive work-
loads as shown earlier, it reduces the P90 and P99 tail by up to
1.40× and 2.62×, respectively. A closer examination reveals
that for mixed workloads (F), SpanDB reduces the impact
of compaction on tail reads; for read-intensive (B and E), it
helps by faster writes.
LinkBench transactional workload. We assess SpanDB’s
asynchronous transaction processing with Facebook’s
LinkBench [6] (Fig 12). Our test uses a 206GB database
containing 600M vertices and 2622M links, performing 20M
requests with LinkBench’s default configuration: 56% scan,
11% write, 13% read, and 20% read-modify-write opera-
tions. Again, for this overall read-intensive workload (around
70%-read), SpanDB fares well against RocksDB, increasing
throughput by up to 50.3% and cuts latency by up to 41%. The
results demonstrate SpanDB’s effectiveness in handling graph
OLTP workloads, where WAL writes cannot be forgone.
Comparison w. NVMe SSD-based systems. Finally, Fig 13
compares SpanDB against two recent systems leveraging fast
NVMe SSDs: KVell [46] and RocksDB-BlobFS [61]. Here
we test with larger datasets, using a 2TB database (except for
RocksDB-BlobFS, which failed to run with larger sizes and
we included its 250GB test results for reference.) We assess 4
YCSB workloads: all-write, A, B, and E.2

First, RocksDB-BlobFS, accessing a single Optane via
BlobFS, delivers worse performance than RocksDB in most
cases, even with a much smaller database. Then, we compare
with KVell, which benefits from a shared-nothing design that
partitions data across multiple disks, aggressive request batch-
ing, and elimination of sorting/compaction. Meanwhile, such
a shared-nothing design with no logging creates challenges in
handling transactions (which is not supported by the current
KVell). As the 2TB database runs beyond the O-O capacity,

2KVell’s code base does not include YCSB-F, whose implementation was
identical to YCSB-A according to the authors.

100% Write A B E

(a) Throughput

0

200

400

600

800

T
h

p
t

(K
O

P
S

)

RocksDB
N2-O

 RocksDB
BlobFS-O

 KVell
N1-N1 (B=1)

KVell
N1-N1 (match)

 SpanDB
S-O

 SpanDB
N1-O

4823 3618

100% Write A B E

(b) Latency

0

500

1000

1500

L
a
te

n
c
y
 (

u
s
)

Figure 13: Additional system comparison, 2TB database
(RocksDB-BlobFS w. 250GB only)

here it runs on N1-N1. We test KVell with two batch size
settings: “B=1” (lowest latency and throughput) and “match”
(the smallest batch size that surpasses SpanDB’s throughput).

With all-write, KVell cannot match SpanDB’s throughput
even at its largest batch size (64), where it suffers huge latency
(average at nearly 5000µs). Batch size 1 delivers a throughput
at 15.2% of SpanDB’s S-O level, and an average latency at
2.17×. YCSB-A sees a similar contrast, though to a lesser
degree. With the read-intensive YCSB-B, KVell slightly out-
performs SpanDB N2-O in throughput with batch size at 3,
but reports latency 4.17× higher, while batch size 1 loses
in both throughput and latency. SpanDB also wins in scans
(YCSB-E), producing a 1.4× throughput and 57% latency
reduction compared against KVell at batch size 64.
CPU utilization. With the 50%-write YCSB workload,
SpanDB’s CPU utilization is 94.5%, while RocksDB’s CPU
utilization is only 63.7%. This is a direct consequence of spin-
ning threads on cores, as required by SpanDB’s polling-based
I/O and asynchronous request processing: All workers are
busy with the request processing and never sleep. Overall
the system spends more time doing useful work: SpanDB
delivers a 3× throughput improvement RocksDB in this ex-
periment. Meanwhile, under light loads SpanDB can easily
enable queue wait monitoring, with its head-server thread
directing other internal threads to sleep when necessary.

5.4 Recovery

We also tested SpanDB’s recovery by inserting system crashes
at random time points in our experiments. Specifically, we
verified that updates in a MemTable, which were persisted
to WAL on SD before a crash, could be correctly recovered
upon rebooting. Results show that SpanDB was successfully
recovered in all cases. Regarding performance, both SpanDB
and RocksDB achieve almost the same recovery speed, e.g.,
10.25s and 10.27s to recover a 4GB database, respectively.
It is reasonable as our earlier results show SPDK and ext4
deliver similar performance for large, sequential reads.

6 Related Work
Tiered storage. Multiple systems leverage tiering techniques
on heterogeneous devices, mainly developing general-purpose

file systems, such as NVMFS [55], Strata [43], and Ziggu-
rat [75], transparently operating across NVRAM, SSD, and
HDD layers. SpanDB is similar in exploiting the low latency
of fast devices and the high bandwidth/capacity of slower
ones. Its major novelty, meanwhile, lies in its KV-specific
optimizations, many above the block storage layer. Also, its
design addresses performance constraints brought by high-
end commodity SSDs (as well as the new SPDK interface),
rather than NVRAM units often emulated in evaluation.

HiLSM [47] and MatrixKV [70] use hybrid storage devices
for KV. However, they both only intend to use a small portion
of a fast and expensive NVM device. In addition, they target
byte-addressable NVM as the fast device, while SpanDB
focuses on the efficient utilization of NVMe SSDs, which
currently offer much wider commodity hardware choices and
significantly lower cost.

Existing work has deployed LSM-tree based KV stores
across multiple devices. For example, Mutant [71] ranks SST
files by popularity and places them on different cloud storage
devices. PrismDB [56] makes LSM-trees “read-aware” by
pinning hot objects to fast devices. SpanDB is similar in
placing the top-level SST files to fast devices, but significantly
differs from them by focusing more on write processing (often
harder to scale [13, 32]). To this end, it encompasses many
new, NVMe-oriented optimizations such as leveraging SPDK,
parallel logging, and adaptive flush/compaction.
KV stores optimizations for fast, homogeneous storage.
Many recent KV systems target low-latency, non-volatile
storage, mostly by designing novel data structures, such as
UniKV [73], LSM-trie [67], SlimDB [58], FloDB [10], Peb-
blesDB [57], KVell [46], and SplinterDB [15]. As WAL cre-
ates a major performance bottleneck, many of them turned
off WAL in evaluation, while KVell completely removed the
commit log. This may lead to data inconsistency and a lack
of transaction support. SpanDB instead retains the data struc-
ture and semantics of the mainstream LSM-tree based design.
Moreover, the above systems assume homogeneous deploy-
ment, while SpanDB promotes heterogeneous storage that
supplements older, slower devices with small, high-end ones.

Several systems deploy hardware solutions. X-Engine [32,
74] leverages hardware acceleration such as FPGA-
accelerated compaction. KVSSD [40] and PinK [35] further
offload KV management to specialized hardware, which are
not commercially available yet. SpanDB, on the other hand,
does not require special hardware support.

Another group of work optimizes KV stores on persis-
tent memory, including HiKV [68], NoveLSM [41], NVM-
Rocks [38], Bullet [34], SLM-DB [39], and FlatStore [14]. All
use emulators in implementation/evaluation except FlatStore,
which uses Intel Optane DCPMM. While KV stores directly
running on persistent memory have undeniable performance
advantages, hardware cost and capacity limit remain practi-
cal issues. The 256GB Optane DCPMM cost 3.12× higher
(per GB) than the O disk used in our tests, and 40.5× higher

than N1. Also, they require more expensive processors. These
systems, therefore, fit better read-intensive workloads with
moderate dataset sizes. Our work targets large databases with
substantial write traffic, and aims to deliver high performance
while keeping the overall hardware cost low.

Also, FlashStore [19] uses flash as a cache for KV
stores. MyNVM [21] reduces DRAM cache demand in My-
Rocks [24], building a second-layer cache on Optane SSD.
SpanDB’s SD, instead, is not designed to be a cache.
Logging optimizations. Wang et al. utilized NVM for
enhanced scalability via distributed logging [64]. NV-
Logging [33] proposes per-transaction logging to enable con-
current logging for multiple transactions. NVWAL [42] ex-
ploits NVM to speed up WAL writes in SQLite. Again the
above studies adopt emulation, and though now commod-
ity NVM products are available their cost remains high, as
discussed earlier. SpanDB, instead, improves WAL write per-
formance on widely adopted NVMe block devices.
Other related work. The Staged Event-Driven Architecture
(SEDA) decomposes request processing into a sequence of
stages and use queues to pipeline, parallelize, and coordinate
their execution [65]. Similar ideas have been used in many
systems, including DeepFlash [72] and ours.

There are many studies optimizing LSM-tree based KV
stores, such as SILK [9] (I/O scheduling to reduce the inter-
ference between client and background tasks), Monkey [17]
and ElasticBF [48] (adopting dynamic bloom filter sizes to
minimize lookup cost), TRIAD [8] (exploring workload skew-
ness to reduce flush/compaction overhead), WiscKey [51]
(separating keys and values to speedup sequential/random
accesses), and HashKV [13] (WiscKey optimization target-
ing update-intensive workloads). Our work is orthogonal and
complementary to the above techniques.

7 Conclusion
In this work, we explored a “poor man’s design" that deploys
a small and expensive high-speed SSD at the most-needed
locations of a KV store, while leaving the majority of data
on larger, cheaper, and slower devices. Our results reveal that
the mainstream LSM-tree based design can be significantly
improved to take advantage of such partial hardware upgrade
(while retaining the major data structures and algorithms, as
well as many orthogonal optimizations).

Acknowledgment
We sincerely thank all anonymous reviewers for their insight-
ful feedback and especially thank our shepherd Angelos Bilas
for his guidance in our camera-ready preparation. We thank
Sam H. Noh for helpful discussions during his visit to QCRI.
We also thank Sen Zheng of Zhongjia IT, for his valuable
technical support during the COVID-19 lockdown. This work
was supported in part by National Nature Science Founda-
tion of China through grant No. 61832011, 61772486, and
61802358.

References
[1] A Persistent Key-Value Store for Fast Storage Envi-

ronments. https://rocksdb.org/. "[accessed-Sept-
2020]".

[2] Benchmarking Apache Samza. https:
//engineering.linkedin.com/performance/b
enchmarking-apache-samza-12-million-messa
ges-second-single-node. "[accessed-Sept-2020]".

[3] Group Commit for the Binary Log. https:
//mariadb.com/kb/en/group-commit-for-the
-binary-log/. "[accessed-Sept-2020]".

[4] MySQL Reference Manual. https://dev.mysql.c
om/doc/refman/5.7/en/replication-options-b
inary-log.html#sysvar_binlog_order_commits.
"[accessed-Sept-2020]".

[5] RocksDB on Steroids. https://www.i-programmer.i
nfo/news/84-database/8542-rocksdb-on-stero
ids.html. "[accessed-Sept-2020]".

[6] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba
Borthakur, and Mark Callaghan. LinkBench: a Database
Benchmark Based on the Facebook Social Graph. In
Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, 2013.

[7] Andrew Audibert. Scalable Metadata Service
in Alluxio: Storing Billions of Files. https:
//www.alluxio.io/blog/scalable-metadata-ser
vice-in-alluxio-storing-billions-of-files/.
"[accessed-Sept-2020]".

[8] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy
Zwaenepoel, Huapeng Yuan, Aashray Arora, Karan
Gupta, and Pavan Konka. TRIAD: Creating Synergies
Between Memory, Disk and Log in Log Structured Key-
Value Stores. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17), 2017.

[9] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan
Gupta, Ravishankar Chandhiramoorthi, and Diego Di-
dona. SILK: Preventing Latency Spikes in Log-
Structured Merge Key-Value Stores. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), 2019.

[10] Oana Balmau, Rachid Guerraoui, Vasileios Trigonakis,
and Igor Zablotchi. FloDB: Unlocking Memory in Per-
sistent Key-Value Stores. In Proceedings of the Twelfth
European Conference on Computer Systems, 2017.

[11] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov,
Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat

Venkataramani. TAO: Facebook’s Distributed Data
Store for the Social Graph. In 2013 USENIX Annual
Technical Conference (USENIX ATC 13), June 2013.

[12] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC
Du. Characterizing, Modeling, and Benchmarking
RocksDB Key-Value Workloads at Facebook. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), 2020.

[13] Helen HW Chan, Chieh-Jan Mike Liang, Yongkun Li,
Wenjia He, Patrick PC Lee, Lianjie Zhu, Yaozu Dong,
Yinlong Xu, Yu Xu, Jin Jiang, et al. HashKV: Enabling
Efficient Updates in KV Storage via Hashing. In 2018
USENIX Annual Technical Conference (USENIX ATC
18), 2018.

[14] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang
Wang, and Jiwu Shu. FlatStore: An Efficient Log-
Structured Key-Value Storage Engine for Persistent
Memory. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS 20),
2020.

[15] Alexander Conway, Abhishek Gupta, Vijay Chi-
dambaram, Martin Farach-Colton, Richard Spillane,
Amy Tai, and Rob Johnson. SplinterDB: Closing the
Bandwidth Gap for NVMe Key-Value Stores. In 2020
USENIX Annual Technical Conference (USENIX ATC
20), 2020.

[16] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing, 2010.

[17] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
Monkey: Optimal Navigable Key-Value Store. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data, 2017.

[18] Jeff Dean. Designs, Lessons and Advice from Building
Large Distributed Systems. Keynote from LADIS, 2009.

[19] Biplob Debnath, Sudipta Sengupta, and Jin Li. Flash-
Store: High Throughput Persistent Key-Value Store.
Proc. VLDB Endow., September 2010.

[20] Catello Di Martino, Zbigniew Kalbarczyk, Ravis-
hankar K Iyer, Fabio Baccanico, Joseph Fullop, and
William Kramer. Lessons Learned from the Analysis of
System Failures at Petascale: The Case of Blue Waters.
In 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 2014.

https://rocksdb.org/
https://engineering.linkedin.com/performance/benchmarking-apache-samza-12-million-messages-second-single-node
https://engineering.linkedin.com/performance/benchmarking-apache-samza-12-million-messages-second-single-node
https://engineering.linkedin.com/performance/benchmarking-apache-samza-12-million-messages-second-single-node
https://engineering.linkedin.com/performance/benchmarking-apache-samza-12-million-messages-second-single-node
https://mariadb.com/kb/en/group-commit-for-the-binary-log/
https://mariadb.com/kb/en/group-commit-for-the-binary-log/
https://mariadb.com/kb/en/group-commit-for-the-binary-log/
https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html#sysvar_binlog_order_commits
https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html#sysvar_binlog_order_commits
https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html#sysvar_binlog_order_commits
https://www.i-programmer.info/news/84-database/8542-rocksdb-on-steroids.html
https://www.i-programmer.info/news/84-database/8542-rocksdb-on-steroids.html
https://www.i-programmer.info/news/84-database/8542-rocksdb-on-steroids.html
https://www.alluxio.io/blog/scalable-metadata-service-in-alluxio-storing-billions-of-files/
https://www.alluxio.io/blog/scalable-metadata-service-in-alluxio-storing-billions-of-files/
https://www.alluxio.io/blog/scalable-metadata-service-in-alluxio-storing-billions-of-files/

[21] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman,
Jens Axboe, Siying Dong, Kim Hazelwood, Chris Pe-
tersen, Asaf Cidon, and Sachin Katti. Reducing DRAM
Footprint with NVM in Facebook. In Proceedings of
the Thirteenth EuroSys Conference, EuroSys ’18, 2018.

[22] Pekka Enberg, Ashwin Rao, and Sasu Tarkoma. I/O
Is Faster Than the CPU: Let’s Partition Resources and
Eliminate (Most) OS Abstractions. In Proceedings of
the Workshop on Hot Topics in Operating Systems, Ho-
tOS ’19, 2019.

[23] Facebook. Cassandra on RocksDB at Instagram.
https://developers.facebook.com/videos/
f8-2018/cassandra-on-rocksdb-at-instagram.
"[accessed-Sept-2020]".

[24] Facebook. MyRocks. http://myrocks.io/.
"[accessed-Sept-2020]".

[25] Facebook. Under the Hood: Building and Open-
sourcing RocksDB. https://www.facebook.com
/notes/facebook-engineering/under-the-h
ood-building-and-open-sourcing-rocksdb
/10151822347683920/. "[accessed-Sept-2020]".

[26] Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong
Wang, Jun Wei, Ruirui Huang, Li Zhou, and Yongming
Wu. An Empirical Study on Crash Recovery Bugs in
Large-Scale Distributed Systems. In Proceedings of
the 2018 26th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the
Foundations of Software Engineering, 2018.

[27] Dieter Gawlick and David Kinkade. Varieties of Con-
currency Control in IMS/VS Fast Path. IEEE Database
Eng. Bull., 1985.

[28] Sanjay Ghemawat and Jeff Dean. LevelDB, A
Fast and Lightweight Key/Value Database Library
by Google. https://github.com/google/leveldb,
2014. "[accessed-Sept-2020]".

[29] Shashank Gugnani, Xiaoyi Lu, and Dhabaleswar K
Panda. Analyzing, Modeling, and Provisioning QoS for
NVMe SSDs. In 2018 IEEE/ACM 11th International
Conference on Utility and Cloud Computing (UCC).
IEEE, 2018.

[30] Robert Hagmann. Reimplementing the Cedar File Sys-
tem Using Logging and Group Commit. In Proceedings
of the eleventh ACM Symposium on Operating systems
principles, 1987.

[31] Kyuhwa Han, Hyukjoong Kim, and Dongkun Shin.
WAL-SSD: Address Remapping-Based Write-Ahead-
Logging Solid-State Disks. IEEE Transactions on Com-
puters, 2019.

[32] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang,
Dengcheng He, Tieying Zhang, Feifei Li, Sheng Wang,
Wei Cao, and Qiang Li. X-Engine: An Optimized Stor-
age Engine for Large-Scale E-Commerce Transaction
Processing. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD ’19,
2019.

[33] Jian Huang, Karsten Schwan, and Moinuddin K Qureshi.
NVRAM-aware Logging in Transaction Systems. Pro-
ceedings of the VLDB Endowment, 2014.

[34] Yihe Huang, Matej Pavlovic, Virendra Marathe, Margo
Seltzer, Tim Harris, and Steve Byan. Closing the Perfor-
mance Gap Between Volatile and Persistent Key-Value
Stores Using Cross-Referencing Logs. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), 2018.

[35] Junsu Im, Jinwook Bae, Chanwoo Chung, Arvind, and
Sungjin Lee. PinK: High-speed In-storage Key-value
Store with Bounded Tails. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), July 2020.

[36] Intel. Breakthrough Performance for Demanding
Storage Workloads. https://www.intel.com/con
tent/dam/www/public/us/en/documents/produc
t-briefs/optane-ssd-905p-product-brief.pdf.
"[accessed-Sept-2020]".

[37] Intel. SPDK: Storage Performance Development Kit.
https://spdk.io/. "[accessed-Sept-2020]".

[38] Andrew Pavlo Jianhong Li and Siying Dong. NVM-
Rocks: RocksDB on Non-Volatile Memory Systems.
http://istc-bigdata.org/index.php/nvmrock
s-rocksdb-on-non-volatile-memory-systems/,
2017. "[accessed-Sept-2020]".

[39] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,
Sam H Noh, and Young-Ri Choi. SLM-DB: Single-
Level Key-Value Store with Persistent Memory. In 17th
USENIX Conference on File and Storage Technologies
(FAST 19), 2019.

[40] Yangwook Kang, Rekha Pitchumani, Pratik Mishra,
Yang-suk Kee, Francisco Londono, Sangyoon Oh,
Jongyeol Lee, and Daniel DG Lee. Towards Building
a High-Performance, Scale-In Key-Value Storage Sys-
tem. In Proceedings of the 12th ACM International
Conference on Systems and Storage, 2019.

[41] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-
designing LSMs for Nonvolatile Memory with Nov-
eLSM. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), July 2018.

https://developers.facebook.com/videos/f8-2018/cassandra-on-rocksdb-at-instagram
https://developers.facebook.com/videos/f8-2018/cassandra-on-rocksdb-at-instagram
http://myrocks.io/
https://www.facebook.com/notes/facebook-engineering/under-the-hood-building-and-open-sourcing-rocksdb/10151822347683920/
https://www.facebook.com/notes/facebook-engineering/under-the-hood-building-and-open-sourcing-rocksdb/10151822347683920/
https://www.facebook.com/notes/facebook-engineering/under-the-hood-building-and-open-sourcing-rocksdb/10151822347683920/
https://www.facebook.com/notes/facebook-engineering/under-the-hood-building-and-open-sourcing-rocksdb/10151822347683920/
https://github.com/google/leveldb
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-905p-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-905p-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-905p-product-brief.pdf
https://spdk.io/
http://istc-bigdata.org/index.php/nvmrocks-rocksdb-on-non-volatile-memory-systems/
http://istc-bigdata.org/index.php/nvmrocks-rocksdb-on-non-volatile-memory-systems/

[42] Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beom-
seok Nam, and Youjip Won. NVWAL: Exploiting
NVRAM in Write-ahead Logging. ACM SIGOPS Oper-
ating Systems Review, 2016.

[43] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A Cross Media File System. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
2017.

[44] Avinash Lakshman and Prashant Malik. Cassandra:
A Decentralized Structured Storage System. ACM
SIGOPS Operating Systems Review, 2010.

[45] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham,
Jae W Lee, and Jinkyu Jeong. Asynchronous I/O Stack:
A Low-latency Kernel I/O Stack for Ultra-Low Latency
SSDs. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), 2019.

[46] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. KVell: the Design and Implementation of
a Fast Persistent Key-Value Store. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,
2019.

[47] Wenjie Li, Dejun Jiang, Jin Xiong, and Yungang Bao.
HiLSM: an LSM-based Key-Value Store for Hybrid
NVM-SSD Storage Systems. In Proceedings of the 17th
ACM International Conference on Computing Frontiers,
pages 208–216, 2020.

[48] Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, and
Yinlong Xu. ElasticBF: Elastic Bloom Filter with Hot-
ness Awareness for Boosting Read Performance in Large
Key-Value Stores. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), 2019.

[49] Hyeontaek Lim, David G Andersen, and Michael Kamin-
sky. Towards Accurate and Fast Evaluation of Multi-
stage Log-structured Designs. In 14th USENIX Con-
ference on File and Storage Technologies (FAST 16),
2016.

[50] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,
Changhoon Kim, Vladimir Braverman, Xin Jin, and Ion
Stoica. DistCache: Provable Load Balancing for Large-
Scale Storage Systems with Distributed Caching. In
17th USENIX Conference on File and Storage Technolo-
gies (FAST 19), February 2019.

[51] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Har-
iharan Gopalakrishnan, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. WiscKey: Separating Keys
from Values in SSD-conscious Storage. ACM Transac-
tions on Storage (TOS), 2017.

[52] C Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh,
and Peter Schwarz. ARIES: A Transaction Recovery
Method Supporting Fine-granularity Locking and Partial
Rollbacks Using Write-ahead Logging. ACM Transac-
tions on Database Systems (TODS), 1992.

[53] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing Memcache at Facebook. In Presented as part of the
10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13), 2013.

[54] Steven Pelley, Thomas F Wenisch, Brian T Gold, and
Bill Bridge. Storage Management in the NVRAM Era.
Proceedings of the VLDB Endowment, 2013.

[55] S. Qiu and A. L. Narasimha Reddy. NVMFS: A Hybrid
File System for Improving Random Write in NAND-
flash SSD. In 2013 IEEE 29th Symposium on Mass
Storage Systems and Technologies (MSST), 2013.

[56] Ashwini Raina, Asaf Cidon, Kyle Jamieson, and
Michael J. Freedman. PrismDB: Read-aware Log-
structured Merge Trees for Heterogeneous Storage.
https://arxiv.org/abs/2008.02352, 2020. arXiv.

[57] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. PebblesDB: Building Key-Value
Stores using Fragmented Log-Structured Merge Trees.
In Proceedings of the 26th Symposium on Operating
Systems Principles, 2017.

[58] Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson.
SlimDB: A Space-Efficient Key-Value Storage Engine
for Semi-Sorted Data. Proceedings of the VLDB Endow-
ment, 2017.

[59] Samsung. Ultra-Low Latency with Samsung Z-NAND
SSD . https://www.samsung.com/us/labs/pdfs/
collateral/Samsung_Z-NAND_Technology_Brief
_v5.pdf. "[accessed-Sept-2020]".

[60] Dong Siying. Workload Diversity with RocksDB.
http://www.hpts.ws/papers/2017/hpts2017_roc
ksdb.pdf, 2017. "[accessed-Sept-2020]".

[61] SPDK. BlobFS (Blobstore Filesystem) - BlobFS Getting
Started Guide - RocksDB Integration. https://spdk
.io/doc/blobfs.html. "[accessed-Sept-2020]".

[62] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard,
Kurt B Ferreira, Jon Stearley, John Shalf, and Sudhanva
Gurumurthi. Memory Errors in Modern Systems: The
Good, the Bad, and the Ugly. ACM SIGARCH Computer
Architecture News, 2015.

https://arxiv.org/abs/2008.02352
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
http://www.hpts.ws/papers/2017/hpts2017_rocksdb.pdf
http://www.hpts.ws/papers/2017/hpts2017_rocksdb.pdf
https://spdk.io/doc/blobfs.html
https://spdk.io/doc/blobfs.html

[63] Toshiba. Toshiba Memory Introduces XL-
FLASH Storage Class Memory Solution.
https://business.kioxia.com/en-us/news/2019/
memory-20190805-1.html. "[accessed-Sept-2020]".

[64] Tianzheng Wang and Ryan Johnson. Scalable Logging
through Emerging Non-Volatile Memory. Proceedings
of the VLDB Endowment, 2014.

[65] Matt Welsh, David Culler, and Eric Brewer. SEDA:
An Architecture for Well-Conditioned, Scalable Inter-
net Services. In Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles, SOSP ’01,
2001.

[66] Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-
Dusseau. Towards an Unwritten Contract of Intel Op-
tane SSD. In 11th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 19), July 2019.

[67] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. LSM-
trie: An LSM-tree-based Ultra-Large Key-Value Store
for Small Data Items. In 2015 USENIX Annual Techni-
cal Conference (USENIX ATC 15), 2015.

[68] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun.
HiKV: A Hybrid Index Key-Value Store for DRAM-
NVM Memory Systems. In 2017 USENIX Annual Tech-
nical Conference (USENIX ATC 17), 2017.

[69] Ziye Yang, James R Harris, Benjamin Walker, Daniel
Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao,
Jonathan Stern, Vishal Verma, and Luse E Paul. SPDK:
A Development Kit to Build High Performance Storage
Applications. In 2017 IEEE International Conference
on Cloud Computing Technology and Science (Cloud-
Com). IEEE, 2017.

[70] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu
Tang, Hong Jiang, Changsheng Xie, and Xubin He. Ma-
trixKV: Reducing Write Stalls and Write Amplification
in LSM-tree Based KV Stores with Matrix Container in
NVM. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 17–31, 2020.

[71] Hobin Yoon, Juncheng Yang, Sveinn Fannar Kristjans-
son, Steinn E. Sigurdarson, Ymir Vigfusson, and Ada
Gavrilovska. Mutant: Balancing Storage Cost and La-
tency in LSM-Tree Data Stores. In Proceedings of the
ACM Symposium on Cloud Computing, SoCC ’18, 2018.

[72] Jie Zhang, Miryeong Kwon, Michael Swift, and My-
oungsoo Jung. Scalable Parallel Flash Firmware for
Many-core Architectures. In 18th USENIX Conference
on File and Storage Technologies (FAST 20), February
2020.

[73] Qiang Zhang, Yongkun Li, Patrick P. C. Lee, Yinlong
Xu, Qiu Cui, and Liu Tang. UniKV: Toward High-
Performance and Scalable KV Storage in Mixed Work-
loads via Unified Indexing. In Proceedings of the 36th
IEEE International Conference on Data Engineering
(ICDE 2020), 2020.

[74] Teng Zhang, Jianying Wang, Xuntao Cheng, Hao Xu,
Nanlong Yu, Gui Huang, Tieying Zhang, Dengcheng
He, Feifei Li, Wei Cao, et al. FPGA-Accelerated Com-
pactions for LSM-based Key-Value Store. In 18th
USENIX Conference on File and Storage Technologies
FAST 20), 2020.

[75] Shengan Zheng, Morteza Hoseinzadeh, and Steven
Swanson. Ziggurat: A Tiered File System for Non-
Volatile Main Memories and Disks. In 17th USENIX
Conference on File and Storage Technologies (FAST 19),
February 2019.

[76] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara
Liskov. Fast Databases with Fast Durability and Recov-
ery Through Multicore Parallelism. In 11th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 14), 2014.

https://business.kioxia.com/en-us/news/2019/memory-20190805-1.html
https://business.kioxia.com/en-us/news/2019/memory-20190805-1.html

A Appendix
A.1 Correctness of Parallel Batched Logging

SpanDB’s parallel WAL write design preserves the RocksDB
consistency semantics. It does not change the concurrency
control mechanism used to coordinate and order client re-
quests. Therefore, transactions with happen-before restric-
tions never appear out of order in the log pages, as briefly
explained below.

The default isolation guarantee offered by RocksDB is
READ COMMITTED. Besides, RocksDB checks write-write con-
flicts and serializes two concurrent transactions that simulta-
neously update common KV items. With these two isolation
guarantees, for any two update transactions T1 and T2, READ
COMMITTED implies that if T1 happens before T2 (i.e., T2 sees
the effects of T1), then T1 must commit before T2 started.

By the design of the RocksDB group WAL write proto-
col, the above implies that the log entries of T1 and T2 should
appear in two batches, where the batch commit of T1 arrive ear-
lier than and complete before the one of T2. While log batches
are written in parallel with SpanDB, they pass a serialization
point for atomic page allocation. Therefore T1’s batch is still
guaranteed to obtain a lower sequence number than the one
of T2, for the latter to see the updates of the former. Similarly,
When recovering from WAL data, SpanDB always performs
redo in ascending order of sequence numbers.
Table 3: Recover time of RocksDB and SpanDB on Optane

Recovery data size Recovery time (s)
RocksDB SpanDB

1 GB 2.24 2.23
2 GB 4.82 4.79
4 GB 10.27 10.25

We also tested SpanDB’s recovery correctness, by insert
system crash at random times during all-write experiments.
Specifically, we verified that updates in a MemTable, which
were persisted to WAL on SD before a crash, could be cor-
rectly recovered upon rebooting. Results show that we can
recover the state of SpanDB in all cases.

We further report the time cost of recovering from a crash,
comparing RocksDB and SpanDB on the Intel Optane de-
vice. Results in Table 3 demonstrate that both SpanDB and
RocksDB achieve almost the same performance, reasonable
as our earlier results show SPDK and ext4 deliver similar
performance for large, sequential reads. As expected, the re-
covery time grows with total data size recovered.

A.2 Additional Evaluation Results

Here, we include additional setup information and evaluation
results that could not fit into the paper’s main evaluation
section (Sec 5).
Device details. Table 4 lists details (such as cost and perfor-
mance) about the five types of devices used in our evaluation.

Note that all devices are commonly used in data center pro-
duction environments, rather than consumer-grade devices.

Table 4: Enterprise disks tested (pricing from CDW-G on
09/15/2020). DWPD (Drive Writes Per Day) measures the
times/day one could overwrite an entire drive for its lifetime.
Note that H and S are used in (4+1) RAID5 arrays, while the
listed numbers here are single-disk data.

ID Model Interface Capacity Price Seq. write
bandwidth

Wrt.
latency

Endurance
(DWPD)

H WD HDD Ultrastar
DC HA210

SATA 1 TB
$106

$0.11/GB
110 MB/s 4200 us ∞

S Intel SSD DC
S4510

SATA 960 GB
$248

$0.26/GB
510 MB/s 37 us 1.03

N1 Intel SSD DC
P4510

NVMe 4.0 TB
$978

$0.25/GB
2900 MB/s 18 us 1.03

N2 Intel SSD DC
P4610

NVMe 1.6 TB
$634

$0.40/GB
2080 MB/s 18 us 1.03

O Intel Optane SSD
P4800X

NVMe 375 GB
$1221

$3.25/GB
2000 MB/s 10 us 30

Table 5: Latency comparison in YCSB tests on S-O

Median (us) P90 (us) P99 (us) P999(us)

All-write (Zipf)
RocksDB 372.0 488.7 856.2 1506.4
SpanDB 187.2 425.6 726.8 1170.1

YCSB-A (Zipf)
RocksDB 284.7 469.4 2695.1 25720.8
SpanDB 68.3 302.9 1487.5 8679.9

YCSB-A (uniform)
RocksDB 314.9 810.1 6296.0 31971.6
SpanDB 114.2 450.3 4147.9 15697.6

YCSB-B (Zipf)
RocksDB 14.7 471.5 803.4 1201.1
SpanDB 25.5 277.1 507.6 715.7

YCSB-E (Zipf)
RocksDB 199.9 2844.0 6016.6 8387.5
SpanDB 240.6 1404.1 4241.6 8483.9

YCSB-F (Zipf)
RocksDB 297.3 685.4 2801.7 23519.0
SpanDB 65.6 361.2 1848.2 10388.9

Tail latency comparison with RocksDB. Due to space limit,
in the main evaluation (Sec 5.3), we only show the comparison
of P90 and P999 latency between RocksDB and SpanDB
across three workloads, namely, YCSB B, E, and F.

Here, we summarize in Table 5 the full set of latency results
ranging from median to more stringent P999, with one all-
write and five YCSB standard workloads. We make similar
observations, as in our discussion on Table 2, that SpanDB
reduce the RocksDB tail latency of RocksDB in most cases
(by 10%-92%).

The only exceptions are with YCSB-B and YCSB-E, two
95%-read workloads. With YCSB-B, SpanDB brings a 73%
higher median latency than RocksDB. Here most read re-
quests are served from DRAM, with ultra-low latency. The
extra overhead introduced by the asynchronous processing
could generate a considerable shift in median latency. With
YCSB-E, there are more long-running requests (see the P90
numbers), incurring higher queue-wait time for other requests,
which does not apply to RocksDB’s synchronous processing.

Note that in both cases, SpanDB improves the workloads’
overall performance (Figure 11). It reduces the average la-
tency of YCSB-B and YCSB-E by 42% and 32%, and im-
proves their throughput by 65% and 41%, respectively.
Comparison with NVMe-based KV stores. In Sec 5.3,

100% write A B E

(a) Throughput

0

200

400

600

800

T
h

p
t

(K
O

P
S

)

RocksDB BlobFS-O KVell O-O (B=1) KVell O-O (match) SpanDB S-O SpanDB N2-O

36182063

Write A B E

(b) Latency

0

200

400

600

800

L
a
te

n
c
y
 (

u
s
)

Figure 14: Comparison on 512GB database (again RocksDB-
BlobFS on a smaller, 250GB database)

we evaluated the performance implications of three sys-
tems, namely, SpanDB, KVell, RocksDB-BlobFS, with a 2TB
database. Here, we repeat this experiment with the database
size used in most of our tests (512GB, though RocksDB-
BlobFS can only run on a 250GB one). For KVell, this
database size allows us to deploy it on the highest config-
uration, on two Optane disks (O-O).

Fig 14 portraits the results. Here RocksDB-BlobFS (on
O) does not appear to bring improvement over our RocksDB
results, and consistently falls behind in throughput across
all workloads, especially for scans (YCSB-E). KVell, how-
ever, does utilize high-speed SSDs well, especially for reads.
Meanwhile, it sacrifices latency with its aggressive batching.

SpanDB, even with the much cheaper S-O combination (as
opposed to O-O used by KVell), achieves 1.33×, and 1.58×
higher throughput than KVell’s higher throughput (“match”
batch size) for all-write and YCSB-E, respectively, with sig-
nificantly lower latency for the all-write case. With regard to
the 50%-read YCSB-A, SpanDB on S-O matches both the
throughput and latency of KVell. SpanDB on N2-O, mean-
while, achieves 1.78× higher throughput than KVell with
33.81% lower latency. For the 95%-read YCSB-B, SpanDB
on S-O delivers 70.2% of KVell’s throughput, while on N2-O
it nearly matches KVell’s performance (on O-O).
Sustained write rate study. Results in our main evaluation
(Fig 9) feature peak write throughput, where each system
absorbs around 10GB of writes. However, accumulated com-
paction has to be accommodated to keep a sustained write rate.
Fig 15 and Fig 16 illustrate this with SpanDB writing using
two very different device combinations, H-O and N1-O, when
we issue bursty requests at nearly their highest sustained rate
(50KOPS on H-O and 200KOPS on N1-O). In both figures,
the top chart plots the foreground workload’s throughput. The
middle one plots the total I/O bandwidth consumed by the
CD and the SD, respectively. The bottom one gives the level
of background I/O activity (in number of compaction/flush
tasks as defined in RocksDB).

Here we see that while SD absorbs waves of write requests,
both it and the CD work actively behind the scene to handle
flush and compaction traffic. As a result, even the cheapest H-
O configuration could “fake” a peak write speed in customer-
facing request processing, as demonstrated by the similar

0

500

1000

K
O

P
S

0

1000

2000

B
W

 (
M

B
/s

)

CD bandwidth SD bandwidth

0 20 40 60 80 100 120 140 160 180 200 220

Time (s)

0

20

40

#
 o

f
B

G
 a

c
ti

v
it

ie
s

Figure 15: Performance (throughput, SD/CD bandwidth, and
background activities) of SpanDB with bursty writes (Zipfian
key distribution, 1000K requests in every 20-second episode)
on H-O, 100GB database.

0

500

1000
K

O
P

S

0

1000

2000

B
W

 (
M

B
/s

)

CD bandwidth SD bandwidth

0 20 40 60 80 100 120 140 160 180 200 220

Time (s)

0

20

40

60

80

#
 o

f
B

G
 a

c
ti

v
it

ie
s

Figure 16: Performance (throughput, SD/CD bandwidth, and
background activities) of SpanDB with bursty writes (Zipfian
key distribution, 4000K requests in every 20-second episode)
on N1-O, 100GB database.

KOPS bursts between H-O and N1-O (top plot). However,
with its much stronger power in background cleaning, N1-O
delivers a sustained write rate 4 × higher. This test reveals
that, with workloads that have moderate sustained write rate,
with little customer-facing random reads (such as certain types
of monitoring and sensor data), H-O may indeed provide a
low-cost, high-performance solution.

	Introduction
	Background and Motivation
	LSM-tree based KV Stores
	Group WAL Writes
	High-Performance SSDs Interfaces

	SpanDB Overview
	Design and Implementation
	Asynchronous Request Processing
	High-speed Logging via SPDK
	Offloading LSM-tree Levels to SD

	Evaluation
	Experimental Setup
	Microbenchmark Results
	Overall Performance
	Recovery

	Related Work
	Conclusion
	Appendix
	Correctness of Parallel Batched Logging
	Additional Evaluation Results

