
Towards a Shared-storage-based Serverless Database
Achieving Seamless Scale-up and Read Scale-out

Yingqiang Zhang, Xinjun Yang, Hao Chen∗, Feifei Li
Jiawei Xu, Jie Zhou, Xudong Wu, Qiang Zhang

Alibaba Group
{yingqiang.zyq, xinjun.y, ch341982, lifeifei, leroy.xjw, jarry.zj, xiangzhong.wxd, jingrui.zq}@alibaba-inc.com

Abstract—The serverless database has recently attracted in-
creasing attention both in industry and academia due to its high
elasticity and the “pay-as-you-go” model. This paper delivers
a thorough review of current shared-storage-based commercial
serverless databases, pinpointing two major challenges: (1) they
either experience difficulties with instance migration during
scaling up or restrict the resource usage within a single physical
host to avoid potential migration. (2) they lack the ability to scale
out secondary nodes due to the absence of strong consistency
support in secondary nodes. Based on our experience in build-
ing serverless databases, this paper proposes two fundamental
requirements to address these two issues: seamless and instant
migration and read scale-out. The former allows for instance
migration when there are insufficient resources on the resident
host during scaling up without application disruption, whereas
the latter necessitates strong consistency on secondary nodes to
process read requests.

To fulfill these fundamental requirements, we propose PolarDB
Serverless, a shared-storage-based serverless database achieving
seamless scale-up and read scale-out. It supports read scale-out
by inheriting the strong consistency feature from PolarDB, mak-
ing it possible to process strongly consistent reads on secondary
nodes. In the pursuit of achieving seamless migration, PolarDB
Serverless introduces a transaction migration policy. It ensures
there is no interruption to the application during migrations,
allowing transactions to continue on the new instance without
any disruptions. It also minimizes the overhead of migration,
achieving a fast migration. In our evaluation, especially in the
context of database migration scenarios, it’s noteworthy that the
migration of a database instance takes just half a second without
causing any exceptions for applications. PolarDB Serverless is the
first shared-storage-based serverless database supporting both
seamless scale-up and read scale-out and is already commercially
available at Alibaba Cloud.

Index Terms—cloud-native database, serverless

I. INTRODUCTION

Cloud-native OLTP databases have emerged as vital in-
frastructure components for modern applications [12], [28],
[37]. Most of them employ either a shared-storage architecture
(such as AWS Aurora [36], Alibaba PolarDB [28] and Hyper-
scale [17], [27], etc) or a shared-nothing architecture (such as
CockroachDB [34], TiDB [21] and OceanBase [38], etc). In
recent times, the trend has been towards serverless databases,
with an emphasis on delivering high elasticity and a “pay-
as-you-go” model [23], [30]. A serverless database can grow
automatically in fine-grained increments to meet the changing

*Hao Chen is the corresponding author.

demands of an application and manage unexpected workloads
that cannot be predicted or scheduled [20]. Deploying a
serverless database enables users to pay only for the resources
they consume, resulting in significant cost savings.

Several serverless databases have already been proposed
based on shared-nothing, shared-storage, or even a novel
database architecture (such as shared-memory [12]). However,
since shared-storage-based databases continue to be popular
and widely adopted by many customers, this paper primarily
focuses on shared-storage-based databases. This paper re-
viewed the currently available shared-storage-based commer-
cial serverless databases and highlighted two critical issues in
them: (1) either experience difficulties with instance migration
during scaling up or restrict the resource usage within a single
physical host to avoid potential migration. (2) lack the ability
to scale out secondary nodes due to the absence of strong
consistency support in secondary nodes. In response to these
issues, this paper proposes two fundamental requirements for
a shared-storage-based serverless database:

(1) Seamless migration. Seamless migration is a critical
aspect of the scaling-up process, involving the allocation of
additional vCores. In scenarios where the current physical
host lacks the necessary free resources to accommodate such
scaling for a resident database instance, the database instance
must either be migrated to another physical host or prevented
from further scaling up. Failing to migrate the instance, as
seen in some databases, violates the fundamental principle
of serverless, which involves adapting allocated resources
to dynamic workloads. Nonetheless, migrating the instance
typically incurs a brief period of downtime. These migrations
typically occur during their peak activity periods, leading to
application errors due to unsuccessful transaction execution
during the downtime. To avoid migration during scaling up,
some serverless databases reserve excessive resources on the
physical host, allowing scaling up to occur within the resident
host. This approach makes the physical host’s resources un-
derutilized. It’s akin to a provisioned deployment, shifting the
reservation from the user side to the back-end side, ultimately
resulting in increased costs for the cloud provider.

(2) Read scale-out. Shared-storage-based cloud-native
databases typically consist of a single primary node responsi-
ble for handling read/write requests and one or more secondary
nodes dedicated to processing read requests. However, many of

these databases face the challenge of returning stale data from
secondary nodes due to asynchronous log shipment and log
application processes. As a result, serverless versions of such
databases often offer two endpoints. One endpoint (associated
with the primary node) ensures strong consistency, while
the other (linked to secondary nodes) provides only eventual
consistency. This means that strongly consistent reads must
be directed to the primary node, and the ability to scale out
secondary nodes cannot assist in this context. When the read
workload becomes intensive, it has to scale up the primary
node, potentially impacting performance when involving mi-
gration. Additionally, most serverless databases impose limits
on the maximum resource an instance can use. This further
constrains performance and restricts resource utilization to a
single physical host. On the other hand, the read-dominant
workloads are very common [9], [15], [35], [37] today, making
it critical to achieve the read scale-out in a serverless database.

In this work, we propose PolarDB Serverless, which is
built upon shared-storage architecture, addressing the afore-
mentioned limitations. PolarDB Serverless is the first shared-
storage-based serverless database that supports both seamless
cross-machine scale-up and read scale-out. It leverages Po-
larDB’s strong consistency feature [37] to ensure strong con-
sistency on secondary nodes. Consequently, PolarDB Server-
less can provide a unique strongly consistent endpoint for
users, enabling the ability to scale out secondary nodes for
processing strongly consistent reads.

Crucially, PolarDB Serverless supports seamless auto-
scaling. During the process of the migration, application
connections remain consistently active, with the migration
procedure entirely transparent to the application. The active
transactions are seamlessly migrated from the old instance
to the new one, without any interruptions. From the appli-
cation’s perspective, it continues to operate as if it were
always connected to the same backend instance, ensuring
uninterrupted availability. To achieve this, we propose con-
nection maintenance and transaction migration policies within
PolarDB Serverless. The connection maintenance policy relies
on the proxy node’s capabilities. During migration, the proxy
node retains the application’s connections and creates new
connections to the new instances, subsequently remapping
these new connections to the applications’ connections. From
the application’s perspective, its connections are always active,
and it does not encounter any exceptions but experiences
a higher latency during the migration. The key design of
transaction migration is to migrate the in-memory data of
the old instance (e.g., redo/binlog logs and some transaction-
related metadata) to the new instance. PolarDB Serverless
synchronize the in-memory data (e.g., redo logs) at the query
level to the new instance during migration via the RDMA
network. After switching to the new instance, it only needs to
roll back the latest unfinished query, re-execute it on the new
instance and respond to the application. This process is totally
transparent to applications. The applications only see a slightly
higher latency for the current query, but will not receive any
exceptions. The RDMA-based data transfer further speeds up

the process of migration, minimizing the overhead.
Furthermore, the seamless migration design holds potential

for various scenarios. It can facilitate transparent database
upgrades by seamlessly migrating instances to new versions
without interrupting applications. Additionally, it contributes
to fast failover capabilities. In the event of a primary node
failure, the secondary node can quickly assume control and
continue processing active transactions, all without the ap-
plication’s awareness of the backend crash. Notably, both of
these features have already been successfully implemented in
PolarDB as part of recent releases.

We summarize our main contributions as follows:
• We reviewed some commercial serverless database designs

and revealed two fundamental requirements that have been
lacking in current serverless databases: seamless migrations
and read scale-out.

• We propose a novel policy to implement a fast seamless
migration of database instances without any interruptions.

• We design and implement PolarDB Serverless, which is
the first shared-storage-based serverless database supporting
both seamless instant cross-machine scale-up and read scale-
out. It is already commercially available at Alibaba Cloud.

• We conducted a comprehensive evaluation of PolarDB
Serverless in various scenarios, demonstrating its remark-
able elasticity.
This paper is structured as follows. First, we present the

background in Section II and show our lessons learned from
build PolarDB Serverless in Section III. Then we provide
PolarDB Serverless’s overview and detailed implementation
in Section IV and Section V. Next, we evaluate PolarDB
Serverless in Section VI and review the related works in
Section VII. Finally, we conclude the paper in Section VIII.

II. BACKGROUND

A. Shared-storage-based OLTP databases

1) Architecture: Shared-storage-based cloud-native
databases, including popular solutions like AWS Aurora [36],
Azure Hyperscale [17], [27] and Alibaba PolarDB [28],
have gained significant traction and widespread adoption
among users today. Fig. 1 illustrates the typical architecture
of a shared-storage-based cloud-native OLTP database. This
architecture typically features a primary node and one or
more secondary nodes. The primary node is responsible for
handling both read and write requests, while the secondary
nodes only process read requests that do not require strong
consistency. If the current primary node fails, one of the
secondary nodes can be promptly promoted to take its
place. Both primary and secondary nodes are monolithic
database instances equipped with traditional components such
as SQL parsing, transaction processing, buffer pools, and
more. However, unlike conventional monolithic databases,
the primary and secondary nodes share disaggregated cloud
storage, ensuring fault-tolerance and data consistency. This
design eliminates the need for additional storage overhead

Primary

CPU Memory

Buffer pool

SQL/TRX

CPU Memory

Buffer pool

SQL/TRX

Secondary

Shared cloud storage

Network

write/read read

Fig. 1. The architecture of a typical shared-storage-based OLTP databases

when adding more secondary nodes, which is different from
conventional primary-secondary-based database clusters,
where each node maintains its own storage. Moreover, the
disaggregated shared storage approach eliminates the need for
data migration when migrating the database instance. Some
of these databases also deploy a proxy node atop the primary
and secondary nodes to facilitate load balancing, manage
failover, control access, and deliver additional functionalities.

2) Stale reads on secondary nodes: Both the primary and
secondary nodes maintain their respective buffer pools to
enhance performance. However, since updates only happen on
the primary node, the secondary node’s buffer pool becomes
inconsistent with the primary node’s. To address this, the
primary node generates corresponding logs for each update,
transmits these logs to the secondary node, and subsequently,
the secondary node applies these logs to update its in-memory
data. For the sake of performance, the log shipment and
application processes are asynchronous. Consequently, the
secondary node might return stale data [37]. In such instances,
the secondary nodes can only process read requests that
can tolerate eventual consistency. Meanwhile, read requests
requiring read-after-write consistency must be processed on
the primary node. It’s essential to note that this limitation is
common in many shared-storage-based databases [37], such
as Aurora and Azure SQL Database.

3) PolarDB: PolarDB [28] is a widely adopted cloud-native
database based on disaggregated shared storage, consisting of
one primary node and one or more secondary nodes. The
implementation of shared storage is carried out through the
utilization of PolarStore [11]. PolarDB introduces a proxy
node that operates atop the primary and secondary nodes,
serving several essential functions. These include read/write
splitting, load balancing, connection management, failover
handling, access control, and various other functionalities.
PolarDB proxy typically has two active nodes for high avail-
ability. Different from other cloud-native databases, PolarDB
establishes communication, such as log shipment, timestamp
fetching, and other message exchanges, between primary and
secondary nodes through the employment of the RDMA
network. PolarDB has recently released the strong consistency
feature [37] that achieves strongly consistent reads on sec-
ondary nodes with low latency. PolarDB Serverless piggybacks
on this design to enable the scale-out of secondary nodes.

B. Other databases

1) Shared-nothing architecture: Another prevalent ap-
proach in database architecture is the shared-nothing archi-
tecture. Unlike the shared-storage architecture, shared-nothing
architecture involves partitioning the entire database. In this
setup, each node operates independently and maintains its
dedicated storage. A node can only access data within its
specific partition. When a transaction spans multiple partitions,
it requires the use of cross-partition distributed transaction
mechanisms, such as the two-phase commit policy. Scaling
out the cluster in shared-nothing architecture, by introducing a
new node, demands the repartitioning of the database. As part
of this process, some data belonging to the new node must
be migrated to the newly added node. The duration of data
migration can be quite lengthy [10], depending on the total size
of the database. Consequently, scaling out in shared-nothing-
based databases often involves a time-consuming rebalancing
procedure. This approach is not suitable for a serverless
database that needs to scale out rapidly.

2) Some novel approaches: Recently, some academic ap-
proaches have explored the integration of shared memory into
databases to enable elastic memory usage [12], [31], [39].
Developing a serverless database based on these designs differs
from the conventional cloud-native database architecture, as
the shared-memory pool offers highly flexible memory allo-
cation and deallocation. Additionally, the secondary node can
offer strong consistency through shared memory. Moreover,
there are some academic trials that develop a multi-primary
database based on shared storage, providing the potential
to build a serverless database with multiple primary nodes.
However, these proposals are still not widely adopted by users,
and some of them are still in academic trials.

Considering the continued popularity and extensive adop-
tion of shared-storage-based databases, such as AWS Aurora,
Azure Hyperscale, and PolarDB, among various customers,
this paper primarily focuses on serverless databases built upon
shared-storage-based architectures.

C. Database logs

1) Redo/undo log: ARIES [29] is widely adopted by
many databases for the purpose of rolling back uncommitted
transactions and recovering committed transactions follow-
ing a database crash. In the ARIES-style logging technique,
each update will generate corresponding redo and undo logs.
Typically, the redo log records the changes in the physical
data, while the undo log maintains the previous value of a
record. Importantly, the changes of undo logs also lead to the
generation of corresponding redo logs. For performance con-
sideration, many databases implement the “no-force” policy,
which only forces the associated redo logs to the storage when
committing a transaction and does not require the modified
data to be flushed to the storage. Due to the limited buffer
size, many database systems allow modified data to be written
to storage before the transaction commits, a strategy known as
the “steal” policy. Typically, if a modified page is going to be
flushed to the storage, its corresponding redo logs (including

those for undo data) must be persistent in the storage before
flushing the page. In this case, for any committed transac-
tion, its redo log must be persistent in the storage. For the
uncommitted transaction, if its modified data is committed,
the page’s related redo logs must be persistent in the storage.
Therefore, during the recovery after a crash, the database can
first apply all redo logs to recover all modified data (including
undo data) that have not been flushed to storage before the
crash. After applying the redo logs, committed transactions
can be recovered. Subsequently, the database applies the undo
logs to further roll back uncommitted data.

2) Binlog: The binary log (binlog) is an important feature
in MySQL, serving as a record of all the modifications made
to the database. It is used for a variety of workloads such as
crash recovery and synchronization for replicas. It is essential
to recognize that redo logs and binlogs are independent and
separately stored, with the binlog not being stored in or
relying on the Write-Ahead Logging (WAL) mechanism. In
modern cloud-native MySQL-variant databases like Aurora
and PolarDB, the binlog is no longer necessary for database
recovery or secondary node synchronization. However, these
databases still maintain the binlog feature for various other
functionalities, such as changed data capture, auditing, and
facilitating analytics. A significant number of PolarDB users
opt to enable the binlog feature, underscoring its continued
importance in existing cloud-native databases. The binlog is
initially stored in a thread’s local cache and is only appended
to the global binlog file and synchronized with storage during
committing a transaction. However, in the serverless databases,
when migrating an active transaction to a new instance, the
recovery of the binlog resident in the old instance’s cache
becomes a challenging aspect in ensuring seamless migration.

III. LESSONS

This paper reviewed the currently available shared-storage-
based serverless databases and highlighted two critical issues
in them: (1) they either experience difficulties with instance
migration during scaling up or restrict the resource usage
within a single physical host to avoid potential migration.
(2) they lack the ability to scale out secondary nodes due
to the absence of strong consistency support in secondary
nodes. Based on the lessons learned from building PolarDB
Serverless, we proposed two fundamental requirements for a
serverless database.

A. Seamless migration requirement

1) Database migration: The typical shared-storage-based
databases only support single primary node. So, when the
primary node’s workload becomes heavy, it has to scale up by
allocating more resources. However, there are some situations
in which the available resources on the current physical host
are not enough for the resident instances to be scaled up. In
this case, it must migrate this instance to another host that has
enough free resources or stop to continue scaling up. Avoiding
scaling up in this situation violates the fundamental principle
of serverless that dynamically allocates resources according to

the changing workloads and limits the resource usage within
a single physical host. Finally, it causes significant negative
impacts on the applications. However, on the other hand,
migrating the instances will induce a negative impact.

The process of migrating a database instance from one host
to another necessitates several steps, including halting the old
instance and re-establishing connections for applications to
the new instance. In the context of serverless databases, these
migrations typically occur during scaling up, often prompted
by a shortage of available resources on the current host. This
situation usually arises when the application’s workload in-
tensifies, resulting in a continuous stream of requests directed
at the old instances. Consequently, halting the old instance
severs these existing connections, abruptly terminating ac-
tive transactions. This results in application errors indicating
unsuccessful transaction execution, compelling users to retry
their operations at a later time. Upon launching the new
instance, it must recover the data that hasn’t yet been flushed
to storage before the old instance’s shutdown. Additionally, it
needs to roll back any aborted transactions. These processes
inevitably introduce a brief period of downtime, and if a long-
running transaction is in progress on the old instance, the
downtime can be significantly extended.

2) Impact of migration: Database migration occasionally
occurs during scaling-up, and some serverless databases even
impose limits on the maximum resources that an instance
can utilize. These factors make it hard to deliberately evoke
instance migration during scaling up in our test. Therefore, we
simulate the migration scenario by utilizing the promotion of
a secondary node since migration typically involves adding a
new instance as a secondary node and subsequently promoting
it to the primary node. We conducted migration tests on several
existing commercial serverless databases using this approach.
As Aurora Serverless enjoys widespread adoption and exhibits
comparatively superior migration performance among them,
we present its results here to showcase the migration’s impact,
as depicted in Fig. 2. In this test, we run SysBench’s read-write
workload on the primary node. At the 30-second mark, we
promote the secondary node to simulate an instance migration.
The promotion process takes approximately 15 seconds to
complete, while other databases we have tested even take a
much longer time. During this period, the application loses
its connection to the database and cannot reconnect until the
migration is finished. This is typically challenging for users to
accept, especially considering that it often occurs during the
peak activity of the application.

3) Avoiding/alleviating migration: To minimize the impact
of migrations, existing serverless databases employ strategies
to reduce the frequency of migration by reserving excessive
resources, including limiting the maximum hardware resources
allocated to an instance and restricting the maximum number
of instances running on one physical host. While these two
limitations can help avoid migration or reduce the cost of
migration, they result in resource underutilization, leading to
increased costs for cloud providers. In an extreme scenario,
consider a physical host with 128 vCores, where each instance

0

10

20

30

40

0 10 20 30 40 50 60 70 80

T
h

ro
u

g
h

p
u

t
(K

-Q
P

S
)

Time (s)

Unavailable

Fig. 2. The promotion of secondary node in Aurora

is capped at 64 vCores to completely prevent migration. In
this setup, each host can accommodate only two instances.
However, this strategy leads to a significant underutilization
of the hardware resources, as these two instances often utilize
only a fraction of the available resources. From the perspective
of the cloud provider, this deployment is equivalent to deploy-
ing two 64-vCore provisioned database instances on a single
physical host. Consequently, while users may derive benefits
from this deployment, the cloud provider does not achieve cost
savings. In reality, in this example, many serverless databases
run more than two instances on a single physical host. This
approach is justified by the relatively low probability that both
instances will simultaneously reach their peak performance
levels. However, once encountering a situation where there is
no free resource for scaling up, the migration can result in
a brief period of downtime during the peak activity of the
application or force the system to cease scaling up, which
would be a violation of its service commitments.

To summarize, achieving seamless migration can eliminate
negative impacts on applications during the migration. Con-
sequently, there is no need to reserve excessive resources on
the physical host to avoid migration. As a result, one physical
host can accommodate more instances, significantly improving
resource utilization. In this case, both users and the cloud
provider can benefit from the serverless database.

B. Scale-out requirements

As discussed in Section II, the secondary node in the shared-
storage-based databases only supports eventual consistency.
Consequently, the shared-storage-based serverless database
must offer two endpoints: one ensuring strong consistency and
the other providing eventual consistency, as shown in Fig. 3.
In this design, when the read pressure becomes heavier, it has
to scale up the primary node rather than scaling out secondary
nodes. As the resource allocated for one instance usually has
an upper bound, a heavy read pressure (that requires strong
consistency) can scale up the primary node to the maximum
capacity, and the performance can not be improved anymore,
while the scale-up and scale-out abilities of the secondary
nodes are neither utilized. Again, we use Aurora Serverless
as an example to illustrate the auto-scaling behavior in read-
dominant workloads within shared-storage-based serverless
databases, as depicted in Fig. 4. Initially, the number of Aurora
Capacity Units (ACUs) stays at a minimal low level because

there is no pressure. However, at the 180-second mark, a
substantial read-only workload is initiated on the primary node
(due to the requirement for strong consistency). As a result, the
number of ACUs starts to increase, eventually stabilizing at its
maximum capacity of 128. We further add additional workload
at the 2340-second mark. However, the number of ACUs does
not increase any further because it has already reached its
maximum limit and the throughput also experiences no further
improvement. If the system extends its support for strong
consistency on secondary nodes, it would have the capacity
to scale out secondary nodes for handling heavier read work-
loads. Conversely, a serverless database that lacks a strong
consistency guarantee is limited to scaling up the primary node
and does not have the ability to scale out secondary nodes. This
is particularly relevant as many applications are primarily read-
intensive [9], [15], [35], including Alibaba’s trading service
workload (comprising 50% reads) and inventory management
service workload (comprising 90% reads).

Shared cloud storage

Primary SecondarySecondary

Cluster endpoint Custom endpoint

App(strong consistency) Reporting app (eventual consistency)

Scale outScale up

Fig. 3. The architecture of the serverless database with two endpoints [6]

0

30

60

90

120

0

50

100

150

200

250

0 180 360 540 720 900 1080 1260 1440 1620 1800 1980 2160 2340 2520

#
 o

f
A

u
ro

ra
 C

ap
ac

it
y
 U

n
it

s
(A

C
U

s)

T
h
ro

u
g
h
p

u
t

(K
-Q

P
S

)

Time (s)

ACUs Throughput (K-QPS)

Heavy workload

Add additional workload

Fig. 4. The auto-scaling of Aurora Serverless in read-dominant workload

On the other hand, scaling up the primary node will also
induce a higher probability of instance migration, which
usually has a negative impact. So the serverless database
should achieve strong consistency and consequently provide
a unique endpoint for the applications. Thus it can scale
up/out secondary nodes for heavier read workloads and the
primary nodes only scale when the write pressure becomes
heavy. Therefore, it can reduce the possibility of saturating
the primary and instance migration. PolarDB supports strong
consistency on secondary nodes [37], which enables PolarDB
Serverless to scale out/up secondary nodes for read requests.

IV. OVERVIEW OF POLARDB SERVERLESS

PolarDB Serverless is built based on provisioned PolarDB,
thus it has a similar architecture to PolarDB, as shown in
Fig. 5. It adopts the disaggregated shared storage architecture,
featuring one primary node to process read/write requests
and one or more secondary nodes dedicated to processing
read requests. Additionally, it incorporates a proxy node
that operates atop both the primary and secondary nodes.
This proxy node facilitates functionalities such as read/write
splitting, load balancing, and failover management, as well as
various serverless-related functionalities, including connection
management and query statement caching. To enable dynamic
resource allocation, PolarDB Serverless is equipped with a re-
source monitoring component. This component gathers data on
resource utilization from all database instances, empowering
it to make decisions regarding resource allocation or recla-
mation. Typically, these decisions revolve around the dynamic
adjustment of memory and CPU resource utilization. Notably,
given that memory usage is predominantly associated with the
buffer pool within the database, PolarDB Serverless employs
a buffer pool manager to resize the buffer pool, consequently
impacting memory consumption. PolarDB Serverless manages
resources at the unit of PolarDB Capacity Units (PCUs), where
one PCU represents the hardware resources of 1 vCPU, 2GB
of memory, and corresponding networking and I/O. It allocates
and deallocates resources for an instance at the granularity of
half a PCU. It is important to note that PolarDB Serverless
only supports a single primary node. Consequently, it is
feasible to scale up the primary node only, while the secondary
node can be scaled up and scaled out, this is similar to the typ-
ical approach adopted by most shared-storage-based serverless
databases. However, what makes PolarDB Serverless stand out
are two innovative designs that deserve special attention when
compared to other serverless databases: the seamless migration
mechanism and the unified strongly consistent endpoint.

Secondary

Shared cloud storage

RDMA network

Connection pool

Connection manager Query statement
cache

Query execution

Redo log Undo log Redo log,
timestamp

Secondary…

Scale out

Scale up

Read/write split Load balancing

Buffer pool manager

Stat
Sample

Primary

Unified strongly consistent endpoint
Proxy

Sampler Decider

Scale up

Resource monitor

Fig. 5. The architecture of PolarDB Serverless

A. Seamless migration

PolarDB Serverless implements the seamless migration to
support migrating a database instance seamlessly from one
physical host to another without interruptions in cases where
there are insufficient free resources to scale up the resident

instance. The two fundamental designs for seamless migration
are connection maintenance and transaction migration.

1) Connection maintenance: The proxy node is responsible
for managing connection access. All applications are directly
connected to the proxy node. The proxy node verifies access
rights for applications’ connections and establishes a corre-
sponding connection to the database instances for each of
them. During a database migration, the proxy node establishes
new connections to the new instances, closing connections to
the old instances after shutting them down. Subsequently, it
remaps the applications’ connections to the new instances.
Therefore, the connections between applications and the proxy
node remain active without any disruptions.

2) Transaction migration: Transaction migration in Po-
larDB Serverless allows the continuation of the old instance’s
uncommitted transactions on a new instance without interrup-
tions. The essential aspect of this approach is to recover the
transaction’s state and its associated modifications on the new
instance. With the potential of ongoing query streams from
applications, we restore both the transaction state and relevant
changes at the query level. This design ensures that only the
most recent query needs to be rolled back and re-executed on
the new instance. To facilitate this, we utilize the proxy node to
cache the latest query statement for each transaction. Because
the data changes are all recorded by redo logs, migrating the
redo log to the new instance can enable the new instance
to recover these changes. For in-flight queries, their changes
should be rolled back on the new instance by applying the
corresponding undo logs. To recover the active transaction’s
in-memory state, it also requires migrating the related metadata
to the new instance. To exactly roll back the latest query, the
proxy node caches the latest query’s undo log number for each
connection. When the database node returns a query’s response
to the proxy node, the corresponding undo log number is
stored with the response and the proxy node will cache it.
For efficiency, we utilize RDMA for data transfers, and a data
preload strategy is implemented for further improvement. The
details are introduced in the subsequent section.

B. Read scale-out

PolarDB Serverless inherits the strong consistency feature
from the provisioned PolarDB. This attribute enables PolarDB
Serverless to process the reads on the secondary nodes while
still guaranteeing strong consistency. In this case, it can
scale out the secondary nodes to improve read performance.
Each PolarDB Serverless can provide a unified endpoint with
strong consistency. All applications can direct their requests
to this unique endpoint. When facing heavier read workloads,
PolarDB Serverless can effectively scale out the secondary
nodes in the background to maintain optimal performance.

V. IMPLEMENTATIONS

A. Seamless migration

PolarDB Serverless introduces a connection maintenance
design to ensure that connections remain active for applica-
tions during the migration process. Another important aspect

of seamless migration is the migration of active transactions
to the new instance. The seamless migration requires that
transactions are not aborted, allowing applications to send
requests to the database as usual. This, in turn, requires the
database system to be capable of recovering the state of active
transactions on the new instance, enabling the new instance to
seamlessly process the subsequent queries of the transaction.

1) Connection maintenance: Connection maintenance
plays an important role in maintaining active connections for
applications throughout the instance migration process. This
design leverages the capabilities of the proxy node. PolarDB
Serverless provides a unified endpoint for applications via
the proxy node. The applications are all connected to the
proxy node rather than directly to the database instance. The
proxy node manages a connection pool that stores all the
connections established with the applications. Upon receiving
a connection request from the application, the proxy node
first establishes the connection with the application. It then
attempts to establish connections with the backend database
instances for that application. In cases where the database
has multiple secondary nodes, the proxy node establishes
connections with each of these nodes. Consequently, a single
connection between the application and the proxy may map to
multiple connections to database instances, each connected to
a different node. During instance migration, the connections
between the proxy node and the migrating instance are discon-
nected. However, the corresponding connection between the
application and the proxy node remains active. The application
can still send requests using this connection. However, the
requests are temporarily cached on the proxy node and will
be forwarded to the new instance after migration is completed.
After migration, the proxy node establishes new connections
with the new instance and remaps the connection to the
application connection. If there are cached requests on that
connection, the proxy node sends them to the new instance.
Throughout the migration, the application can continue send-
ing requests. However, if a request is sent via the affected
connection, it may experience a longer response time because
the proxy node must wait for the migration to complete
before forwarding the request to the new instance. From the
application’s perspective, the application is always connected
to an alive instance, but with the potential for increased query
latency when using the affected connection.

2) Live transaction migration: Transaction migration is a
critical part of seamless and instant migration. It supports the
uncommitted transaction to continue to be executed on the
new instance. In an interactive transaction model, where a
transaction comprises multiple queries, the database receives
the queries sequentially. If the migration happens during a
transaction’s processing, it will lose the in-memory data (such
as undo/redo logs and related metadata) and the updates
made by the transaction’s prior queries have been successfully
responded to. So, to support the live transaction migration, we
should guarantee the changes made by the prior successful
queries can be still seen by the new instance. The uncommitted
transaction’s state can be recovered by the new instance. The

Old instance

SQL Engine

Trx engine
Undo log

Data pages

Redo
buffer

Binlog
cache

New instance

SQL Engine

Trx engine
Undo log

Data pages

Redo
buffer

Binlog
cache

In-memory info
live migration

- Redo log
- Trx metadata

Redo log Binlog Shared storage

RDMA network

Data

Fig. 6. In-memory data synchronization during instance migration

live transaction migration involves two important parts: data
migration and transaction recovery.

Cache synchronization. The most critical data component
is the in-memory redo log, which reflects all updates that
occurred on the old instance. Migrating the in-memory redo
log to the new instance ensures that the new instance has all
the changes that happened on the old instance. Consequently,
all changes initiated by successful queries are visible on the
new instance. For in-flight queries that are still executing at
the time of migration, their changes must be recovered on the
new instance. Achieving this rollback necessitates migrating
the corresponding undo logs. In PolarDB Serverless, undo
logs are organized into pages. To minimize data traffic, we
opt to migrate the redo log associated with the undo data
rather than directly transferring entire undo pages. In addition
to data, certain in-memory data structures (e.g., transaction
objects) and related metadata must also be migrated to the new
instance. Some users may enable binlog in their databases, in
which case the in-memory binlog requires migration as well.
Fig. 6 shows the data migration process during the instance
migration. Once the new instance is prepared, it will send
some metadata (such as its log buffer address) to the old
instance. Subsequently, the old instance will start to remotely
write its corresponding redo logs to the new instance’s log
buffer. During the migration, the old instance is still serving
applications. In this case, when the old instance finishes
executing one query, it will send the query’s related redo logs
(including the undo data’s redo) to the new instance before
acknowledging the applications. This can guarantee the new
instance has all the related redo logs of the successful queries.

Transaction reconstruction. On the new instance, changes
made by the unfinished queries need to be rolled back and re-
executed. The critical task is precisely rolling back the changes
made by an individual query while also restoring the latest
query statement. To address this challenge, we leverage the
capabilities of the proxy node. As illustrated in Fig. 7, the
proxy node caches the latest query for each transaction, along
with its associated metadata. When the proxy node receives
a query from the application, it initially caches the most

Trx ID Undo ID Latest query Finished
12200 1000 Update xxx 1
12201 1100 Select xxx 0

… … … …

Query statement cacheProxy

Fig. 7. The query statement cache on proxy

BEGIN
 query 1
 query 2

 query 3
COMMIT

t1
t2

Fig. 8. An example of a transaction

recent query for each transaction in its memory, marking it
as unfinished. On the database side, it includes the maximum
undo log ID generated by the current query in the response
to the proxy node. When the proxy node receives a query’s
response from the database, it associates this ID with the query
and marks the query as finished. If a query is marked as
finished, it signifies that its updates have all been migrated
to the new instance, obviating the need for further recovery
actions on the new instance. However, if it’s marked as
unfinished, it indicates that this query was in progress on the
old instance when the old instance was shut down. In such
cases, it’s necessary to roll back the changes made by the
query. This is achieved by applying the undo log, starting from
the transaction’s latest undo log and ending at the query’s undo
log ID that is stored on the proxy node. After the rollback,
the query can be sent to the new instance for re-execution.

Lock state synchronization. Like many databases, PolarDB
Serverless implements multi-version concurrency control and
defaults to read committed snapshot isolation. This approach
allows reads to access the committed version without neces-
sitating row locks, while writes lock rows for updates by
obeying a two-phase locking protocol. Essential to transaction
migration is the transfer of lock states between instances.
To facilitate this, PolarDB Serverless embeds the transaction
ID within the row’s payload upon modification, a practice
also common in databases like Oracle and PostgreSQL. In
this mechanism, a transaction intending to modify a row
first checks the embedded transaction ID. If this ID indicates
an uncommitted state, it signifies that the row is locked by
another active transaction, and thus, the current transaction
must wait. Once the locking transaction commits, the waiting
transaction can proceed by writing its transaction ID into the
row, effectively acquiring the lock. During migration, once we
finish recovering the data on the new instance, the lock state
should be also recovered accordingly.

Example of transaction resuming . Fig. 8 gives an example
of a transaction comprising three queries, sent to the database
sequentially. If the migration occurs at t1, the secondary query

is still in progress on the old instance. Since the proxy node
keeps track of the highest undo log ID associated with the
last finished query, the new instance can apply undo logs
from the newest ID down to that specific ID to roll back
changes made by the secondary query. Subsequently, it re-
executes the secondary query on the new instance, and the
following query will be also sent to the new instance. If the
migration takes place at t2, the secondary query has already
successfully responded to the application and is marked as
finished on the proxy node. In this case, there is no need to
roll back this query. If the third query arrives after migration,
it can be directly sent to the new instance. If it arrives during
migration, the third query is temporarily cached on the proxy
node and marked as incomplete. It will be forwarded to the
new instance once it is ready.
Binlog migration. When the binlog is enabled for some
specialized tasks, transaction migration should support binlog
migration as well. Unlike redo logs, binlogs don’t have a
unified buffer. Each thread maintains its own binlog buffer,
appending to it during transactions. Upon transaction commit-
ting, this buffered binlog will be written to the global binlog
file on the storage. In exceptional cases, a transaction may
generate a large amount of binlog, spanning several GBs.
Storing such extensive binlogs in memory isn’t feasible. They
are temporarily stored on storage and appended to the global
binlog file during committing. During migration, uncommitted
transactions necessitate in-memory binlog data transfer to the
new instance, and any on-storage temporary binlog files may
require remapping.

Fig. 9 details the binlog migration process. At the beginning
of the migration, the new instance will allocate an amount of
memory. The old instance then requests memory addresses for
transactions from the new instance. Subsequently, it transmits
its in-memory binlog to the new instance’s binlog cache via
the one-sided RDMA interface. Some transactions might have
saved portions of their binlogs as temporary storage files.
To identify these on the new instance, temporary files are
tagged with unique transaction IDs. The related metadata
within these files, like persistency offset, is stored with the
related in-memory binlog for migration. During the migration,
every query, upon completion, ensures its binlog gets written
remotely to the new instance. After migration, the new instance
assigns its node transaction objects and retrieves the respective
binlogs from the cache and temporary files.

B. Migration speedup

Transaction migration prevents interruptions and reduces the
cost associated with rolling back uncommitted transactions on
the new instance. However, it is essential to further reduce
the cost of migration. PolarDB Serverless accelerates this
process using two strategies. The first is the RDMA-based
data migration. The RDMA network is already a fundamental
infrastructure at Alibaba and highly co-design with PolarDB.
During migration, the related in-memory data (e.g., redo log,
binlog, and the necessary metadata) are transferred to the new
instance via the one-sided RDMA interface. The other one is

Metadata Binlog

Old instance

Metadata Binlog

Metadata Binlog
TrxID Metadata Binlog

Binlog cache

Persistent global binlog file

Trx-100.binlog Trx-200.binlog Trx-300.binlogTemporary files

Permanent file

Trx
Trx

Recover

New instance

Shared storage

RDMA

Fig. 9. The migration of binlog

to warm up the new instance in advance. It includes preloading
the necessary redo/undo/binlog logs from the storage and pars-
ing them in advance if possible. This could save a lot of I/O
overheads and CPU cycles during the migration. Leveraging
these optimizations, migration can be completed in under half
a second, as depicted in Fig. 10 in Section VI.

C. Schedule policy

PolarDB Serverless supports the strong consistency, en-
abling the secondary node to process the strongly consistent
reads. In this case, it is possible to implement the read/write
split in PolarDB Serverless. This will bring more opportunities
for the scheduling of scaling up primary/secondary nodes and
scaling out secondary nodes.

1) Scaling up primary node: PolarDB Serverless supports
only a single primary node, allowing for scaling up but not
scaling out. Scaling up an instance can potentially trigger
instance migration, which can impact performance. To mitigate
this, there are several strategies in PolarDB Serverless. The
first strategy is to scale out the secondary node instead of
scaling up the primary. In cases where the primary node
experiences increased pressure, especially with concurrent
read requests, PolarDB Serverless can expand by adding a
secondary node and redirecting the read requests to it. This
approach helps alleviate the pressure on the primary node
and may mitigate the need to scale up the primary node.
The second strategy accelerates migration by preparing a new
instance in advance. This preparation occurs when the primary
node’s capacity is increasing, and the available resources on
the current host have decreased to 10%. This new instance
is added to the database cluster in the role of a secondary
node and receives the primary node’s redo logs as discussed in
Section V-A2. The primary node also synchronizes its buffered
data with the new instance if there’s sufficient time. When
migration is initiated, the new instance is swiftly promoted
to the new primary since it already possesses the necessary
redo logs and some hot data in its memory. The third strategy
involves proactive instance migration. At Alibaba, clear and
consistent periodic usage patterns have been observed in many
applications. For example, some databases consistently scale
up to a specific capacity at around the same time each day.
Predicting such instances’ need for migration during their peak
activity times can enable pre-migration to prevent migration-

related performance issues during those periods. The last
strategy is to avoid migrating the primary node by scaling out
the secondary nodes of another cluster. For instance, when
planning to migrate the primary node of cluster-A for scaling
up and simultaneously discovering that a secondary node of
cluster-B is using a significant amount of resources on the
current host, the secondary node can be scaled down, freeing
up resources for scaling up the primary node of cluster-A
instead of migrating it. To ensure the performance of cluster-
B, additional secondary nodes are added to cluster-B before
scaling down its secondary nodes.

2) Scaling up/out secondary nodes: In PolarDB Serverless,
secondary nodes can provide strongly consistent reads, en-
abling the ability to scale out secondary nodes for handling
read-intensive workloads. However, the decision of whether
to scale up a secondary node or scale out depends on two
considerations. One approach is to minimize the number of
secondary nodes. Having more nodes in the database cluster
will complicate the management and waste the bandwidth. So
we prefer to initially attempt to scale up a secondary node
and resort to scaling out only if scaling up is not feasible in
certain situations. The second one is to minimize the likelihood
of migration. When the free resources on the current host are
reduced to 20%, we will not scale up the secondary node
on the current host, and try to scale out. This can avoid the
potential migration for the resident primary node.

VI. EVALUATION

A. Objectives

While serverless databases are a relatively recent addition
to the market, there currently exists no standard benchmark
for their evaluation. Drawing on our expertise in developing
serverless databases and insights from customer feedback,
we highlight several critical performance-related aspects. We
then evaluate PolarDB Serverless based on these criteria by
answering the following question.
• Can PolarDB Serverless achieve a fast seamless cross-

machine scaling up without interruptions?
• Does PolarDB Serverless automatically scale out secondary

nodes for read-heavy bursty workloads?
• Does PolarDB Serverless adjust resource allocation dynam-

ically based on varying workloads?

B. Setup

1) Test platform: Since PolarDB Serverless is already com-
mercially available at Alibaba Cloud, our evaluations are all
conducted in the Alibaba public cloud environment. In our
test, the underlying physical machines are equipped with 2
Intel Xeon Platinum 8369B CPU and 1TB DDR4 DRAM,
running CentOS-7 OS. These physical machines are connected
by a 50Gbps Mellanox ConnectX-4 network. In PolarDB
Serverless, it measures the capacity of an instance with the
unit of PolarDB Capacity Unit (PCU), where one PCU indi-
cates the hardware resource of 1 vCore, 2GB memory, and
corresponding networking and I/O.

2) Baseline: Aurora Serverless is one of the most popular
serverless databases that is based on shared-storage architec-
ture. It is naturally our baseline. The testing within Aurora
Serverless is conducted on the Amazon Web Service and
adopts its default parameters. We test Aurora Serverless with
its cluster endpoint which guarantees strong consistency. In
Aurora Serverless, it measures the capacity of an instance
with the unit of Aurora Capacity Unit (ACU). Each ACU is a
combination of approximately 2GB of memory, corresponding
CPU, and networking.

3) Workloads: Since the serverless database is used for
dynamic workloads, we use the SysBench [24], a popular
benchmark stressing DBMS systems, to generate a dynamic
workload in our evaluations. In most databases, we configure
the SysBench with 32 tables and each has 1M records.

C. Migration performance

As seamless migration is one of the most important fea-
tures of PolarDB Serverless, we first evaluate the instance
migration performance during scale-up, comparing it to Aurora
Serverless. In serverless databases, the instance migration
occasionally occurs during scale-up. Some databases often
reserve some spare resources on the physical host for potential
scale-ups. Moreover, Aurora Serverless caps the maximum
ACUs of an instance at 128. These make it challenging
to intentionally trigger instance migration during our tests.
Typically, instance migration involves adding a new instance
as a secondary node and then promoting it to the primary node.
Therefore, to simulate the migration scenario, we perform a
test by promoting a secondary node to the primary node.

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80

T
h

ro
u

g
h

p
u

t
(K

-Q
P

S
)

Time (s)

Aurora Serverless PolarDB Serverless

Promotion Unavailable

Fig. 10. The performance of secondary node promotion

0

5

10

15

20

0 10 20 30 40 50 60 70 80

#
 o

f
a
b

o
rt

ed
 t

ra
n

sa
ct

io
n

s

Time (s)

Aurora Serverless PolarDB Serverless

Fig. 11. The number of aborted transactions during secondary node promotion

[24s] thds: 16 tps: 1751.99 qps: 35047.78 (r/w/o: 24535.85/7007.96/3503.98) lat (ms,95%): 11.45 err/s: 0.00 reconn/s: 0.00
[25s] thds: 16 tps: 1757.06 qps: 35160.27 (r/w/o: 24605.89/7040.26/3514.13) lat (ms,95%): 11.04 err/s: 0.00 reconn/s: 0.00
[26s] thds: 16 tps: 1736.93 qps: 34696.63 (r/w/o: 24299.04/6923.73/3473.86) lat (ms,95%): 12.08 err/s: 0.00 reconn/s: 0.00
[27s] thds: 16 tps: 1714.90 qps: 34243.00 (r/w/o: 23953.60/6859.60/3429.80) lat (ms,95%): 11.65 err/s: 0.00 reconn/s: 0.00
[28s] thds: 16 tps: 1742.01 qps: 34859.15 (r/w/o: 24413.10/6962.03/3484.01) lat (ms,95%): 10.84 err/s: 0.00 reconn/s: 0.00
[29s] thds: 16 tps: 1742.10 qps: 34840.92 (r/w/o: 24383.34/6973.38/3484.19) lat (ms,95%): 11.65 err/s: 0.00 reconn/s: 0.00
[30s] thds: 16 tps: 1756.95 qps: 35184.05 (r/w/o: 24641.34/7028.81/3513.91) lat (ms,95%): 11.04 err/s: 0.00 reconn/s: 0.00
FATAL: mysql_drv_query() returned error 2013 (Lost connection to MySQL server during query) for query 'UPDATE sbtest17 SET k=k+1 WHERE id=49770'
FATAL: mysql_drv_query() returned error 2013 (Lost connection to MySQL server during query) for query 'UPDATE sbtest8 SET k=k+1 WHERE id=49929'
FATAL: mysql_drv_query() returned error 2013 (Lost connection to MySQL server during query) for query 'COMMIT'
FATAL: mysql_drv_query() returned error 2013 (Lost connection to MySQL server during query) for query 'UPDATE sbtest18 SET k=k+1 WHERE id=50423'
FATAL: mysql_drv_query() returned error 2013 (Lost connection to MySQL server during query) for query 'UPDATE sbtest25 SET k=k+1 WHERE id=51142'
FATAL: mysql_drv_query() returned error 2013 (Lost connection to MySQL server during query) for query 'COMMIT'
(last message repeated 3 times)
FATAL: mysql_drv_query() returned error 2013 (Lost connection to MySQL server during query) for query 'UPDATE sbtest2 SET k=k+1 WHERE id=50205'
FATAL: mysql_drv_query() returned error 2013 (Lost connection to MySQL server during query) for query 'COMMIT'
(last message repeated 1 times)

Fig. 12. The errors that were reported during secondary node promotion in
Aurora Serverless

In this test, we first run the SysBench’s read-write workload
on the primary node. Upon the primary node reaching a
certain scale, we simulated a migration triggered by scale-up
by promoting the secondary node to the primary. Fig. 10 shows
the results for PolarDB Serverless and Aurora Serverless. At
the 30-second mark, we promote the secondary node to the
primary. We can find that PolarDB Serverless only experiences
a momentary throughput dip, restoring performance within
half a second. Such fast migration benefits from our careful de-
signs with RDMA-based data transferring. In contrast, Aurora
Serverless required 15 seconds for the new primary node to
become available. What’s more, during the migration, Aurora
Serverless aborted all application connections, preventing new
connections until promotion completion. Fig. 11 gives the
number of the aborted transactions. During the test, there
are no aborted transactions in PolarDB Serverless because
it supports transaction migration. The unfinished transaction
can continue to be executed on the new instance. But, in
Aurora Serverless, when the old instance shuts down, the
connections are aborted and the corresponding transactions are
also aborted, reporting 16 aborted transactions because there
are only 16 connections in our testing. Fig. 12 further presents
the client-side screen snapshot during the promotion in Aurora
Serverless, depicting connection losses. However, PolarDB
Serverless reports no errors, and the connection remained
uninterrupted. With PolarDB Serverless, applications behaved
as if continuously connected, still dispatching requests. These
requests were temporarily cached on the proxy node and
processed by the new primary.

D. Elasticity performance

1) Read scale-out: PolarDB Serverless delivers strong
(read-after-write) consistency for secondary nodes, facilitating
performance enhancement through secondary node scaling.
However, the secondary node in the other serverless database,
such as Aurora Serverless, can not serve strongly consistent
reads. The read performance will be bound by the single
primary node. In this test, we evaluate the scalability of
the secondary node in the PolarDB Serverless, compared to
Aurora Serverless, shown in Fig. 13. Initially, no workloads
run, with both PolarDB Serverless and Aurora Serverless
operating on minimal hardware. We use the SysBench to
generate a read-dominant workload with high pressure (500
threads) and begin running at the 50-second mark. Aurora

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200 1400 1600 1800

T
hr

ou
gh

pu
t (

K
-Q

PS
)

Time (s)

Aurora Serverless PolarDB Serverless
Aurora (r5.8xlarge, 32vCPU) PolarDB (g4.4xlarge, 32vCPU)
Aurora (r6i.8xlarge, 32vCPU)

Fig. 13. The elasticity under read-dominant workload

Serverless routes all requests to its primary node due to strong
consistency demands, gradually scaling up with increasing
throughput. Eventually, its performance is sustained at 200 K-
QPS because it is already scaled up to the maximum capacity
(128 ACU). However, PolarDB Serverless scales rapidly in
response to the workload, showing an immediate throughput
rise. Although it caps PCUs at 32 per instance and a single
node can not accommodate this heavy workload, it can scale
out secondary nodes to handle read requests, reaching a peak
throughput of 1.3M QPS.

Given Aurora Serverless’s undisclosed hardware and distinct
implementation from PolarDB, direct performance compar-
isons may not be fair here. Fig. 13 juxtaposes the performance
of 32vCPU provisioned PolarDB and Aurora, providing a
context for serverless performance. While Aurora Server-
less performs similar to its 32vCPU provisioned counterpart
(r5.8.xlarge), and slightly underperforms the other 32 vCPU
provisioned counterpart (r6i.8xlarge). This is because their
underlying hardwares are different. PolarDB Serverless out-
performs, achieving roughly 2.5 times the throughput of its 32
vCPU provisioned version. This is because PolarDB Serverless
can scale out secondary node to improve read performance
(while ensuring strong consistency) but it is not possible in
Aurora Serverless.

2) Dynamically resource allocation: Serverless databases,
by design, dynamically adjust resources based on dynamic
workload. The intensive workloads lead the database to utilize
nearly all its resources, triggering a scale-up. Subsequently,
additional resources are allocated, and the database eventually
stabilizes, utilizing these resources at a predetermined level
(defaulted to 80% in PolarDB Serverless). This test focuses
on the interplay between allocated and consumed PCUs in
PolarDB Serverless during workload variations.

As PolarDB Serverless allocates the resource at the gran-
ularity of PCU, we explored the dynamic behavior of Po-
larDB Serverless, focusing on its dynamic PCU allocation
and utilization, as depicted in Fig. 14. The bottom graph
illustrates the workload pressure over time, represented by
the number of client threads. The top graph mirrors this
with corresponding PCU data. Initially, with minimal database

0

5

10

15

20

25

30

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

of

 a
llo

ca
te

d_
PC

U

of

 u
se

d_
PC

U

Time(s)

Used_PCU Allocated_PCU

0
50
100
150
200
250

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

of

 th
re

ad
s

Time (s)

Fig. 14. Changes in PCU under different pressures

stress, both allocated and used PCUs are low. However, as we
gradually intensify the workload pressure starting from the 20-
second mark, the utilization of PCUs increases significantly,
almost exhausting all of the allocated PCUs. Accordingly,
the scheduling policy attempts to assign more PCUs to bring
the used PCUs back down to the predefined percentage.
Nonetheless, the workload pressure increases at a faster rate
than the PCU allocation can accommodate. Consequently,
the used PCUs closely match the allocated PCUs during
this period. Once the workload stabilizes after the 20-second
mark, PCU allocation ceases, and the used resource percentage
remains at the predetermined value. Subsequently, when the
workload pressure subsides after the 60-second mark, the
allocated PCUs are gradually reclaimed. It’s worth noting that
resource deallocation in PolarDB Serverless tends to proceed
at a more measured pace compared to allocation, primarily to
ensure optimal performance. As the workload pressure once
again starts to incrementally rise around the 90-second mark,
it exhibits a pattern similar to the previous occurrence.

VII. RELATED WORKS

1) Shared-storage-based databases: Shared-storage-based
cloud-native databases, such as AWS Aurora [36], Azure
Hyperscale [17], [27], Azure Socrates [3] and Alibaba Po-
larDB [28], have gained widespread adoption and popularity
among users. Typically, these databases consist of a primary
node and one or more secondary nodes. The primary node is
responsible for handling both read and write requests, while
the secondary nodes focus on processing read requests that
do not require strong consistency. The primary and secondary
nodes share disaggregated cloud storage. It eliminates the
need for additional storage overhead when adding secondary
nodes and removes the requirement for data migration when
migrating the database instance. However, challenges arise
when developing serverless versions of these databases. They
encounter difficulties with instance migration during scaling
up and face limitations in scaling out secondary nodes due to
the absence of strong consistency support in secondary nodes.

2) Shared-nothing-based database: Shared-nothing archi-
tecture is another prevalent approach. Popular examples of

databases utilizing the shared-nothing architecture include
Spanner [14], CockroachDB [34], OceanBase [38], TiDB
[21], DynamoDB [1], Cassandra [4], FoundationDB [5] and
PolarDB-X [10]. Unlike the shared-storage architecture, the
shared-nothing architecture involves partitioning the entire
database. Each node operates independently and maintains its
dedicated storage. A node can only access data within its spe-
cific partition. When a transaction accesses multiple partitions,
it requires the use of distributed transaction mechanisms, such
as the two-phase commit policy. Scaling out such databases,
by introducing a new node, demands the repartitioning of
the database. The duration of data migration can be quite
lengthy [10], depending on the total size of the database. As
a result, this approach is not suitable for a serverless database
that requires rapid scaling out.

3) Serverless database: Several OLTP serverless databases
have been introduced recently. They are typically based
on either the shared-storage architecture (such as Aurora
Serverless [2]) or the shared-nothing architecture (e.g., Cock-
roachDB Serverless [26]). Some innovative approaches have
also emerged (e.g., shared memory) [12]. However, these
serverless databases have certain limitations. Shared-memory-
based approaches are still primarily experimental in academia
and have not yet reached commercial availability The ma-
jority of commercial databases continue to rely on shared-
nothing or shared-storage architectures. Shared-nothing-based
databases often require data migration when adding new
nodes during scaling out, which can be time-consuming and
challenges the goal of providing second-level elasticity in
a serverless database. Existing shared-storage-based server-
less databases face issues related to instance migration and
strong consistency. PolarDB Serverless is designed to address
these challenges and aims to provide a serverless database
with seamless auto-scaling capabilities. There are also some
NoSQL serverless databases (e.g., Firestore [23]), but they are
not suitable for OLTP applications. This paper mainly focuses
on the OLTP database.

4) Online migration: Some works also focus on online
migration. First of all, to achieve an even data distribution
between nodes, several works try to optimize data migration,
so as to minimize performance impact and service interruption
during data migration, typical approaches include Remus
[22], CockroachDB [34], Microsoft Citus [16], Greenplum
[13], Amazon Redshift [7] and E-Store [33]. On the other
hand, there are also some efforts to optimize live migration
in a multi-tenant database, so as to achieve live migration
with effectively zero down-time and ensure minimal impact
on transaction execution, e.g., Albatross [18], ProRea [32],
Slacker [8], Zephyr [19]. Also, live migration approaches for
key-value stores are proposed [25]. However, the process of
migration operation is very time-consuming and complex [10],
and hence migration operations in these systems will still
interrupt online service. Unlike the above work, PolarDB
Serverless achieves seamless migration through flexible design
of connection maintenance and live transaction migration.
Also, PolarDB serverless supports seamless horizontal scaling

out according to actual workloads, and ensures that no errors
and online service will not be interrupted during scaling out.

VIII. CONCLUSION

This paper reviews existing serverless databases and in-
troduces two critical requirements for a serverless database:
seamless migration and strong consistency. Seamless migra-
tion enables the migration of database instances when there
are insufficient free resources on the physical host during
scaling up. In such cases, physical hosts don’t need to reserve
excessive resources for potential scaling up, resulting in lower
total ownership costs. Meanwhile, strong consistency empow-
ers secondary nodes to handle read requests requiring strong
consistency, efficiently utilizing the scaling-out capabilities of
secondary nodes to process these requests. This also decreases
the probability of scaling up the primary node and avoids
potential migration. To meet these vital requirements, we
introduce PolarDB Serverless, a serverless database ensuring
seamless scale-up and read scale-out. PolarDB Serverless in-
herits its strong consistency ability from PolarDB-SCC [37] to
support read scale-out. To enable seamless migration, PolarDB
Serverless proposes connection maintenance and transaction
migration policies. By combining these two designs, it sup-
ports the seamless scale-up. In our evaluation of PolarDB
Serverless, especially in the context of database migration
scenarios, it’s worth noting that PolarDB Serverless completes
the migration of a database instance in just half a second
without causing any exceptions for applications.

ACKNOWLEDGMENT

We are grateful to anonymous reviewers for their construc-
tive feedback and valuable suggestions.

REFERENCES

[1] Amazon. DynamoDB. https://aws.amazon.com/dynamodb.
[2] Amazon. Amazon Aurora Serverless. https://aws.amazon.com/rds/

aurora/serverless/, 2021. ”[accessed-October-2023]”.
[3] Panagiotis Antonopoulos, Alex Budovski, Cristian Diaconu, Alejandro

Hernandez Saenz, Jack Hu, Hanuma Kodavalla, Donald Kossmann,
Sandeep Lingam, Umar Farooq Minhas, Naveen Prakash, et al. Socrates:
The New SQL Server in the Cloud. In Proceedings of the 2019
International Conference on Management of Data, pages 1743–1756,
2019.

[4] Apache. Cassandra-3.11.4. https://github.com/apache/cassandra/tree/
cassandra-3.11.4.

[5] Apple. FoundationDB. https://www.foundationdb.org.
[6] AWS. Instant and fine-grained scaling with Amazon Aurora Server-

less v2. https://pages.awscloud.com/rs/112-TZM-766/images/2022
0608-DAT Slide-Deck.pdf, 2022. ”[accessed-October-2023]”.

[7] Amazon AWS. Overview of managing clusters in Amazon
Redshift. https://docs.aws.amazon.com/redshift/latest/mgmt/
managing-cluster-operations.html.

[8] Sean Barker, Yun Chi, Hyun Jin Moon, Hakan Hacigümüş, and Prashant
Shenoy. ”cut me some slack”: Latency-aware live migration for
databases. In Proc. of ACM EDBT, 2012.

[9] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter
Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni,
Harry Li, et al. TAO: Facebook’s Distributed Data Store for the Social
Graph. In 2013 USENIX Annual Technical Conference (USENIX ATC
13), pages 49–60, 2013.

[10] Wei Cao, Feifei Li, Gui Huang, Jianghang Lou, Jianwei Zhao,
Dengcheng He, Mengshi Sun, Yingqiang Zhang, Sheng Wang, Xueqiang
Wu, et al. PolarDB-X: An Elastic Distributed Relational Database for
Cloud-Native Applications. In 2022 IEEE 38th International Conference
on Data Engineering (ICDE), pages 2859–2872. IEEE, 2022.

[11] Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng Zhu, Song
Zheng, Yuhui Wang, and Guoqing Ma. PolarFS: an Ultra-low Latency
and Failure Resilient Distributed File System for Shared Storage Cloud
Database. Proceedings of the VLDB Endowment, 11(12):1849–1862,
2018.

[12] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, Sheng Wang,
Qingda Hu, Xuntao Cheng, Zongzhi Chen, Zhenjun Liu, Jing Fang,
et al. PolarDB Serverless: A Cloud Native Database for Disaggregated
Data Centers. In Proceedings of the 2021 International Conference on
Management of Data, pages 2477–2489, 2021.

[13] Jeffrey Cohen, John Eshleman, Brian Hagenbuch, Joy Kent, Christopher
Pedrotti, Gavin Sherry, and Florian Waas. Online Expansion of Large-
Scale Data Warehouses. Proc. of VLDB Endow., 4(8):1249–1259, August
2011.

[14] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,
Christopher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, and Peter Hochschild. Spanner: Google’s Globally
Distributed Database. ACM Trans. Comput. Syst., 31(3), August 2013.

[15] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, et al. Spanner: Google’s Globally
Distributed Database. ACM Transactions on Computer Systems (TOCS),
31(3):1–22, 2013.

[16] Umur Cubukcu, Ozgun Erdogan, Sumedh Pathak, Sudhakar Sannakkay-
ala, and Marco Slot. Citus: Distributed PostgreSQL for Data-Intensive
Applications. In Proc. of ACM SIGMOD, 2021.

[17] Sudipto Das, Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija Jo-
vanovic, Vivek R Narasayya, Miodrag Radulovic, Maja Stikic, Gaox-
iang Xu, and Surajit Chaudhuri. Automatically Indexing Millions of
Databases in Microsoft Azure SQL Database. In Proceedings of the
2019 International Conference on Management of Data, pages 666–679,
2019.

[18] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi.
Albatross: Lightweight Elasticity in Shared Storage Databases for the
Cloud Using Live Data Migration. Proc. of VLDB Endow., 4(8):494–505,
May 2011.

[19] Aaron J. Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi.
Zephyr: Live Migration in Shared Nothing Databases for Elastic Cloud
Platforms. In Proc. of ACM SIGMOD, 2011.

[20] Fauna. Introduction to serverless databases. https://fauna.com/blog/
intro-to-serverless-databases, 2022. ”[accessed-October-2023]”.

[21] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu,
Li Shen, Liu Tang, Yuxing Zhou, Menglong Huang, et al. TiDB: A
Raft-based HTAP Database. Proceedings of the VLDB Endowment,
13(12):3072–3084, 2020.

[22] Junbin Kang, Le Cai, Feifei Li, Xingxuan Zhou, Wei Cao, Songlu
Cai, and Daming Shao. emus: Efficient Live Migration for Distributed
Databases with Snapshot Isolation. In Proc. of ACM SIGMOD, 2022.

[23] Ram Kesavan, David Gay, Daniel Thevessen, Jimit Shah, and C Mohan.
Firestore: The NoSQL Serverless Database for the Application Devel-
oper. In Proceedings of the 2023 IEEE 39th International Conference
on Data Engineering (ICDE), pages 3367–3379, 2023.

[24] Alexey Kopytov. Sysbench. https://github.com/akopytov/sysbench.
[25] Chinmay Kulkarni, Aniraj Kesavan, Tian Zhang, Robert Ricci, and

Ryan Stutsman. Rocksteady: Fast migration for low-latency in-memory
storage. In Proc. of ACM SOSP, 2017.

[26] Cockroach Labs. A serverless database for your most demanding ap-
plications. https://www.cockroachlabs.com/lp/serverless-database-mc/,
2022. ”[accessed-October-2023]”.

[27] Willis Lang, Frank Bertsch, David J DeWitt, and Nigel Ellis. Microsoft
Azure SQL Database Telemetry. In Proceedings of the Sixth ACM
Symposium on Cloud Computing, pages 189–194, 2015.

[28] Feifei Li. Cloud-native Database Systems at Alibaba: Opportunities and
Challenges. Proceedings of the VLDB Endowment, 12(12):2263–2272,
2019.

[29] Chandrasekaran Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh,
and Peter Schwarz. ARIES: A Transaction Recovery Method Supporting
Fine-granularity Locking and Partial Rollbacks Using Write-ahead Log-

ging. ACM Transactions on Database Systems (TODS), 17(1):94–162,
1992.

[30] Olga Poppe, Qun Guo, Willis Lang, Pankaj Arora, Morgan Oslake, Shize
Xu, and Ajay Kalhan. Moneyball: Proactive Auto-Scaling in Microsoft
Azure SQL Database Serverless. Proceedings of the VLDB Endowment,
15(6):1279–1287, 2022.

[31] Chaoyi Ruan, Yingqiang Zhang, Chao Bi, Xiaosong Ma, Hao Chen,
Feifei Li, Xinjun Yang, Cheng Li, Ashraf Aboulnaga, and Yinlong
Xu. Persistent Memory Disaggregation for Cloud-Native Relational
Databases. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 3, pages 498–512, 2023.

[32] Oliver Schiller, Nazario Cipriani, and Bernhard Mitschang. Prorea: Live
database migration for multi-tenant rdbms with snapshot isolation. In
Proc. of ACM EDBT, 2013.

[33] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J.
Elmore, Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker.
E-Store: Fine-Grained Elastic Partitioning for Distributed Transaction
Processing Systems. Proceedings of the VLDB Endowment, 8(3):245–
256, 2014.

[34] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan
Lewis, Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael
Poss, et al. Cockroachdb: The Resilient Geo-distributed SQL Database.
In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, pages 1493–1509, 2020.

[35] The Transaction Processing Council. TPC-E Benchmark. http://tpc.org/
tpce/, 2007. ”[accessed-October-2023]”.

[36] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmade-
sam, Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Mau-
rice, Tengiz Kharatishvili, and Xiaofeng Bao. Amazon Aurora: Design
considerations for high throughput cloud-native relational databases. In
Proceedings of the 2017 ACM International Conference on Management
of Data, pages 1041–1052, 2017.

[37] Xinjun Yang, Yingqiang Zhang, Hao Chen, Chuan Sun, Feifei Li, and
Wenchao Zhou. PolarDB-SCC: A Cloud-Native Database Ensuring
Low Latency for Strongly Consistent Reads. Proceedings of the VLDB
Endowment, 16(12):3754–3767, 2023.

[38] Zhenkun Yang, Chuanhui Yang, Fusheng Han, Mingqiang Zhuang,
Bing Yang, Zhifeng Yang, Xiaojun Cheng, Yuzhong Zhao, Wenhui
Shi, Huafeng Xi, et al. OceanBase: a 707 Million tpmC Distributed
Relational Database System. Proceedings of the VLDB Endowment,
15(12):3385–3397, 2022.

[39] Yingqiang Zhang, Chaoyi Ruan, Cheng Li, Xinjun Yang, Wei Cao, Feifei
Li, Bo Wang, Jing Fang, Yuhui Wang, Jingze Huo, et al. Towards
Cost-effective and Elastic Cloud Database Deployment via Memory
Disaggregation. Proceedings of the VLDB Endowment, 14(10):1900–
1912, 2021.

