
PolarDB-SCC: A Cloud-Native Database Ensuring Low Latency
for Strongly Consistent Reads

Xinjun Yang

Alibaba Group

xinjun.y@alibaba-inc.com

Yingqiang Zhang

Alibaba Group

yingqiang.zyq@alibaba-inc.com

Hao Chen

Alibaba Group

ch341982@alibaba-inc.com

Chuan Sun

Alibaba Group

hualuo.sc@alibaba-inc.com

Feifei Li

Alibaba Group

lifeifei@alibaba-inc.com

Wenchao Zhou

Alibaba Group

zwc231487@alibaba-inc.com

ABSTRACT
A classic design of cloud-native databases adopts an architecture

that consists of one read/write (RW) node and one ormore read-only

(RO) nodes. In such a design, the propagation of write-ahead logs

(WALs) from the RW node to the RO node(s) is typically performed

asynchronously. Consequently, system designers either have to

accept a loose consistency guarantee, where a read from the RO

node may return stale data, or tolerate significant performance

degradation in terms of read latency, as it then needs to wait for the

log to be propagated and applied. Most commercial cloud-native

databases, such as Amazon Aurora, choose performance over strong

consistency. As a result, it makes RO nodes useless for many ap-

plications requiring read-after-write consistency (a form of strong

consistency), and the support for serverless databases (i.e., allowing

the RO nodes to be scaled out automatically) is impossible as they

require a single endpoint.

This paper proposes PolarDB-SCC (PolarDB-Strongly Consis-

tent Cluster), a cloud-native database architecture that guarantees

strongly consistent reads with very low latency. The core idea

is to eliminate unnecessary waits and reduce the necessary wait

time on RO nodes while still supporting strong consistency. To

achieve this, it tracks the RW node’s modification timestamp at

three progressively finer-grained levels. We further design a Linear

Lamport timestamp to reduce the RO node’s timestamp fetching

operations and leverage the RDMA network for all the data trans-

ferring (e.g., timestamp fetching and log shipment) to minimize

network overhead and extra CPU usage. Our evaluation shows that

PolarDB-SCC does not incur any noticeable overhead for ensuring

strongly consistent reads compared with the eventually consistent

(stale) read policy. To the best of our knowledge, PolarDB-SCC

is the first "read-write splitting" cloud-native database that sup-

ports strongly consistent read with negligible overhead. Compared

with a straightforward read-wait design, PolarDB-SCC improves

throughput by up to 4.51× and reduces median latency by up to

3.66× in SysBench’s read-write workload. PolarDB-SCC is already

commercially available at Alibaba Cloud.

PVLDB Reference Format:
Xinjun Yang, Yingqiang Zhang, Hao Chen, Chuan Sun, Feifei Li,

and Wenchao Zhou. PolarDB-SCC: A Cloud-Native Database Ensuring Low

Latency for Strongly Consistent Reads. PVLDB, 16(12): 3754 - 3767, 2023.

doi:10.14778/3611540.3611562

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

1 INTRODUCTION
Cloud-native databases are becoming a critical infrastructure sup-

porting the migration of data storage and processing tasks to the

cloud environment. Notable examples include Aurora [55], Hyper-

scale [14, 30], Socrates [6] and PolarDB [32]. Many of them adopt

a disaggregated shared storage architecture and usually consist of

one primary (RW) node to process the read/write requests and one

or more secondary (RO) nodes to handle read requests.

To keep an RO node’s buffered data up-to-date, the RW node

generates the corresponding log for each update and ships the log

to RO nodes. RO nodes apply the log to update their buffered data.

Since the log application process is asynchronous, an RO node may

be unable to return the latest updates that have already taken place

on the RW node and consequently may return "stale" data. Many

cloud-native databases claim that RO nodes could improve read

performance. However, for the reason outlined above, the service

on an RO node can only serve applications that does not require

read-after-write consistency. Table 1 shows some databases’
1
stale

read ratios (representing how many read requests get the stale data)

on the RO node. QueryFresh [56] is a recent research work that

targets minimizing staleness on RO nodes. In this test, we first

update a record on the RW node, then read it from the RO node

after Δt. It shows that only PolarDB-SCC can completely avoid

the stale read. In contrast, in the other databases, applications that

require strongly consistent reads have to send read requests to the

RW node, presenting a severe limitation.

Table 1: Ratios of stale reads in different databases

Δt DB-A DB-B PolarDB QueryFresh PolarDB-SCC

1ms 99.8% 99.9% 97.8% 100% 0

7ms 17.1% 89.0% 0.3% 59.9% 0

The strongly consistent read (i.e., a read request always sees the

latest committed updates that happen before it, aka the strict con-
sistency model [58]) is an essential need in many applications [2].

For example, in Alibaba’s e-commerce applications, if it cannot

guarantee strong consistency, the customer who has placed an or-

der may soon finds that the order does not exist or is shown to be

unpaid after payment. Such need for strongly consistent reads also

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.

doi:10.14778/3611540.3611562

1
Due to the restriction of DeWitt Clause, we anonymize the commercial systems. DB-A

and DB-B are two databases from two top cloud providers.

https://doi.org/10.14778/3611540.3611562
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611562

appear in scenarios where databases are used to support interac-

tions among microservices [28]. These microservices usually share

the same databases and have some dependencies at the application

level. It relies the database to provide strong consistency to ensure

the interactions proceed as expected. At Alibaba Cloud, we also re-

ceive many requests from users to provide such strongly consistent

reads, such as insurance companies and financial institutes.

In many of today’s cloud-native databases, to support strong

consistency, applications have to send all read requests to the RW

node. Consequently, they cannot improve the read throughput by

adding more RO nodes and the RW node could quickly become the

bottleneck. This dramatically limits the system’s ability to process

read-dominant workloads. In practice, many applications are read-

dominated [9, 12, 51], including Alibaba’s trading service work-

load (50% reads) and inventory management service workload (90%

reads). On the other hand, cloud service providers have recently

evolved from provisioned to serverless [4, 18, 26, 34, 39, 44]. To sup-

port the RO node’s auto-scaling-out, a unified endpoint is required

for users. The strongly consistent read must be guaranteed by this

endpoint to ensure that the writes on this endpoint must be im-

mediately visible to the following reads. Therefore, it’s imperative

to have a new system design to ensure strongly consistent reads

on RO nodes in a cloud-native database cluster to improve system

performance and make the system really scalable.

There are two straightforward designs to support consistent

reads on RO nodes: commit-wait and read-wait. In the commit-wait
approach, the RW node has to wait for the related logs to be applied

to all RO nodes before committing a transaction. The read-wait
requires an RO node to get the RW node’s current timestamp when

a request arrives and wait for the logs that happened before that

timestamp to be applied before processing this request. These two

naive solutions induce expensive wait time and sacrifice perfor-

mance significantly. Some systems do provide these options for

ensuring a strongly consistent read, but they are not recommended

due to their poor performance. Table 2 shows the performance drop

when enabling the strongly consistent reads in different commercial

databases
2
. The detailed configurations are shown in Section 5.1.

PolarDB-SCC only increases the RO node’s query latency by 3.8%,

while other systems increase the latency by 1.26×-51.28×. Some

works also try to speed up the log shipment with the fast network

(e.g., RDMA) or design a faster log application on RO nodes, e.g.,
Query Fresh [56]. They aim to minimize the data’s staleness, but

still face the problem that not all the requests on RO nodes can get

the latest updates, only guaranteeing eventual consistency.

Table 2: RO node’s latency increment when enabling strongly
consistent reads on RO nodes

Databases MGR [37] PolarDB DB-C PolarDB-SCC

Latency increment 5128% 126% 553% 3.8%

Many existing systems depend on the streaming log shipment

and linearly apply logs on RO nodes. An RO node can not perform

a strongly consistent read before the logs are applied to a specific

timestamp, even if the requested data is not changed in those logs.

In these conventional schemes, the RO node is unaware if a certain

page is changed, causing unnecessary waiting.

2
DB-C is a database from a famous startup.

Targeting these limitations, this paper proposes PolarDB-SCC

(PolarDB-Strongly Consistent Cluster), a cloud-native database that

guarantees low latency for strongly consistent reads on RO nodes.

PolarDB-SCC is designed based on the read-wait policy while elim-

inating the aforementioned overheads. To minimize an RO node’s

wait time on log applications, we proposes a hierarchical modifi-

cation tracker, which tracks the RW node’s modification at global,

table, and page levels. Doing this allows an RO node to wait for

the log application at a fine-grained level (e.g., page level) when

the global timestamp is unsatisfied. This avoids having to wait for

the entirety of its in-memory data to be up-to-date. Furthermore,

we propose a Linear Lamport timestamp on the RO node to avoid

frequent timestamp fetching from the RW node. This significantly

reduces the network and communication overhead. We then lever-

age a fast RDMA network (a commonly available infrastructure

for many cloud vendors’ data centers) for log shipment and times-

tamp fetching, which eliminates the RW node’s CPU overhead for

handling timestamp fetching requests and transferring logs.

Based on these designs, PolarDB-SCC achieves low-latency and

strongly consistent reads on RO nodes, enabling a truly scalable
and elastic "read-write splitting" cloud-native database cluster that
ensures strongly consistent reads on RO nodes. PolarDB-SCC can pro-

vide one endpoint (e.g., via a proxy) with strong consistency guaran-

tees for applications, and distribute read requests to its RO nodes in

a load-balancing manner. This brings much better elasticity, scala-

bility, and on-demand usage, as it allows the system to dynamically

increase/decrease the number of RO nodes according to application

load in a transparent fashion. On the other hand, PolarDB-SCC

neither changes the database’s internal data structures nor relies

on certain databases’ internal data structures, making it easy to be

integrated with other databases and optimizations.

We summarize our main contributions as follows:

• We propose a hierarchical modification tracker, which tracks

the RW node’s modification timestamp at three levels (global,

table and page levels). This enables an RO node to wait for log

applications at a fine-grained level when the global timestamp is

unsatisfied, minimizing the wait time overhead.

• We design a Linear Lamport timestamp on RO nodes, which

avoids frequent timestamp fetching operations initiated by RO

nodes and reduces the network overhead.

• We further leverage the fast RDMA network to guarantee low

latency for ensuring strongly consistent reads on RO nodes.

• We thoroughly evaluate PolarDB-SCC with different workloads.

PolarDB-SCC does not incur any noticeable overhead compared

with one using the stale read policy.

This paper is structured as follows. First, we present the back-

ground and motivation in Section 2. Then we provide PolarDB-

SCC’s overview and detailed design in Section 3 and Section 4.

Next, we evaluate PolarDB-SCC in Section 5 and review the related

works in Section 6. Finally, we conclude the paper in Section 7.

2 BACKGROUND AND MOTIVATION
2.1 Cloud-native relational databases
Increasingly more on-premise databases are being migrated to the

cloud for reasons such as high availability, elasticity, and lower

costs. There have been a number of cloud-native databases designed

RW node

CPU Memory

Buffer pool

SQL/TRX

CPU Memory

Buffer pool

SQL/TRX

RO nodes

Shared cloud storage

Network

write/read read

Figure 1: The architecture of a typical cloud-native relational
database

by different cloud providers, e.g., AWS Aurora [55], Azure Hyper-

scale [14, 30], Azure Socrates [6] and Alibaba PolarDB [32]. They

often have compatible APIs with conventional relational databases,

but target to fully utilize the underlying cloud resources and in-

frastructure to provide better performance, elasticity, scalability,

and availability [11, 32, 47]. Cloud-native databases play an essen-

tial role in connecting the underlying resources (IaaS) to various

applications (SaaS), making it a critical system for the cloud [32].

Figure 1 illustrates the typical architecture of a cloud-native rela-

tional database. It usually consists of one primary (RW) node and

one or more secondary (RO) nodes, in which the RW node serves

both read and write requests while the RO nodes only process

read requests. Each node is a monolithic database instance with

conventional components such as SQL parsing, transaction process-

ing, buffer pool, etc. However, unlike the conventional monolithic

databases, the RW and RO nodes share disaggregated cloud storage

that promises fault-tolerance and consistency. Thus, adding more

RO nodes will not require extra storage overhead. That is differ-

ent from the conventional primary/secondary database cluster, in

which each node has its own storage. In a cloud-native database,

the RO node can respond to read requests to increase performance,

and provide high availability by promoting one of the RO nodes

to be the new RW node when the existing RW node fails. Some

cloud-native relational databases often deploy a proxy node on top

of the RW and RO nodes to achieve load balancing, handle failover,

provide access control, and other functionality.

All database systems buffer data in the memory to improve per-

formance. To avoid losing buffered data, they usually generates the

redo log (which records the data changes) for each update and syn-

chronizes the redo log to its persistent storage before committing

the transactions. In a cloud-native database, to keep the buffered

data up-to-date, RO nodes read the redo logs from the disaggregated

shared cloud storage and apply them to their local buffer.

2.2 Limitations on RO nodes
Stale read. As illustrated above, an RO node asynchronously reads

redo logs from the cloud storage (or receives redo logs from the

RW node via the network), and applies them to keep its buffered

data up-to-date. Due to the network delay, storage I/O, and CPU

overhead, the log application process on RO nodes may be unable

to keep up with the RW node’s foreground transaction processing.

As a result, the RO node’s buffered data may fall behind the RW

node’s data updates. In this case, a read request on an RO node can

0

0.5

1

N
o

rm
al

iz
ed

re
ad

 t
h

ro
u

g
h

p
u

t

RW node RO node

5:00 6:00 7:00 8:00 9:00 10:00 11:00
Time

0

0.5

1

N
o

rm
al

iz
ed

C
P

U
 u

ti
liz

at
io

n

Figure 2: Read throughput and CPU utilization on RW and
RO nodes

32 64 128
Number of client threads

0

50

100

150

T
h

ro
u

g
h

p
u

t
(K

-Q
P

S
)

All on RW Read wait Stale read

32 64 128
Number of client threads

0

0.5

1

1.5

A
vg

. l
at

en
cy

 (
m

s)

Figure 3: Performance comparison of different read policies

not read the latest updates that happen before it. For example, if a

transaction successfully updates a value on the RW node, and reads

it on an RO node slightly later. It may find the stale value instead of

the latest version. Existing cloud-native databases (e.g., Aurora [55],
Azure SQL [6], and PolarDB [32]) do not provide strongly consistent

reads on RO nodes or the latency of strongly consistent reads is too

high to be accepted by applications [5, 35].

Underutilized RO nodes. As a result, in practice, when strong

consistency is required, users usually send all such read requests to

the RW node. In this scenario, RO nodes are only used for handling

the failover but not for scalability, and the resources on RO nodes

are not fully utilized. To illustrate this case, we sample the CPU

utilization and read throughput of the RW and RO nodes from a

standard PolarDB instance at Alibaba, shown in Figure 2. Because

the application in this case can not tolerate stale reads, it has to

send all its read requests to the RW node for strongly consistent

reads. Therefore, the RW node’s throughput and CPU utilization

are up to 15.61× and 14.40× higher than the RO node (taking the

average). Due to the lack of ensuring strong consistency, the RO

nodes are idle most of the time, making them underutilized.

Overhead of ensuring strongly consistent read. There are two
straightforward ways to achieve strongly consistent reads on the

RO nodes: commit-wait and read-wait. The commit-wait solution
forces the RW node to wait until the corresponding redo logs have

been applied to all RO nodes before committing the transaction.

This design induces considerable wait overhead to the critical path

of transactions with writes, significantly decreasing the write per-

formance. In the read-wait scheme, before an RO node processes

a read request, it fetches the RW node’s current timestamp and

waits for its local applied timestamp to precede it. Compared to the

commit-wait scheme, the read-wait scheme induces less negative

impact on processing write requests on the RW node. But it still has

some limitations: First, it will slow down the RW node if there are

many requests reading timestamps from the RW node. Additionally,

the RO node always waits for all the in-memory data to be up-to-

date, regardless how much data it will access. To demonstrate

the overheads induced by read-wait, we tested Alibaba Cloud’s

cloud-native database PolarDB with three configurations: all on
RW (all requests are handled on the RW node), read-wait (guaran-
tee strongly consistent read via read-wait design), and stale-read
(RO nodes return the stale read). Figure 3 shows their performance

in Sysbench’s read-write workloads (a detailed setup is shown in

Section 5.1). As expected, the stale-read policy has the best perfor-

mance (both throughput and latency) because RO nodes could help

handle read requests without extra overhead, but they fail to satisfy

strong consistency as required by many applications. Processing

all requests (read and write) on the RW node decreases throughput

by up to 48.85% and increases latency by up to 88.64% compared

with the stale-read policy. The read-wait configuration provides

only slight improvement over the “all on RW” configuration and its

performance even drops slightly under light workloads because of

its heavy overhead. Each read request on the RO node will initiate

a timestamp fetching request on the RW node in the read-wait de-

sign. This will slow down the RW node’s performance significantly,

especially when the RW node has a heavy load. Furthermore, RO

nodes have to wait for log transfer and application after fetching

the timestamp, making good performance a difficulty.

2.3 Opportunities with RDMA
In the read-wait design, the TCP/IP-based log shipment and times-

tamp fetching suffer from high network latency and high CPU usage.

Fortunately, as the networks become faster and technologies such

as RDMA [15, 63] are readily available at commodity clusters, the

remote memory access latency is inching closer to the native DRAM

latency [1]. On the other hand, the one-sided RDMA interface does

not require involving the server’s CPU when remotely reading

the server’s data. The low network latency and CPU overhead fea-

tures of RDMA motivate us to track the RW node’s timestamp at

finer-grained levels and also speed up log shipment and timestamp

fetching.

2.4 Stale reads on other database systems
Having stale reads on RO nodes is not the specific problem in

cloud-native databases (with disaggregated shared cloud storage).

It also exists in the other databases, e.g., the primary-secondary and

shared-nothing distributed clusters. MGR cluster [37] is one of the

most popular primary-secondary database clusters
3
. It uses the

statement log to synchronize the changes from the RW (primary)

node to the RO (secondary) nodes. But RO nodes apply the log

asynchronously, and could fall behind the RW nodes leading to

stale reads. The ProxySQL [45], a high-performance MySQL proxy,

does not fix this problem. It may also return stale data when reading

from secondary nodes [46]. TiDB [22] also suggests responding to

read requests on leader nodes because ensuring strongly consistent

3
MGR also supports the multi-primary mode, but the primary-secondary mode is more

commonly used.

Proxy node

RW node

Buffer pool Buffer pool

SQL/TRX engine SQL/TRX engine

RO nodes

Hierarchical modification tracker

Shared cloud storage

Data/log Data/log

Log buffer Log buffer

Hierarchical modification tracker

Log writer
Log apply

Log push

Timestamp fetch

RDMA-based
network

Figure 4: The architecture of PolarDB-SCC

reads on follower nodes would have to wait for log application, in-

curring significant overhead. AmazonDynamoDB [49] also requires

performing all of its strongly consistent reads and writes in the

same region. Otherwise, it only supports eventual consistency [7].

CockroachDB [54] also claims that the global strong consistent read

will cause high latency. As a tradeoff, CockroachDB [54] and Span-

ner [12] both provide the option of bounded-staleness. However, it

cannot completely avoid stale reads.

3 POLARDB-SCC OVERVIEW
Design rationale. PolarDB-SCC aims to provide a low-latency,

strongly consistent cloud-native database cluster, in which the RO

nodes could always return the latest updates that are committed

ahead of the request’s/transaction’s start timestamp. This enables

the system to distribute read requests to the RO nodes and split the

read/write requests while ensuring strong consistency. As a result,

the cluster can provide a unified, strongly consistent endpoint for

applications (e.g., via a proxy), and adjust the number of RO nodes

on-demand elastically. Resource utilization on RO nodes is also im-

proved, rather than deploying RO nodes only for handling failover.

The main challenge is to keep the in-memory data consistent be-

tween the RW and RO nodes while ensuring low latency. The key

idea of PolarDB-SCC is to eliminate unnecessary waits and reduce

the necessary wait time on the RO node.

Architecture overview. Figure 4 shows the architecture of PolarDB-
SCC, which consists of one primary (RW) node, one or more sec-

ondary (RO) nodes, and a proxy node on top of the RW and RO

nodes. The RWnode could serve both read andwrite requests, while

RO nodes only respond to read requests. The proxy node could

provide transparent load balancing by separating read and write

traffic via distributing read requests to RO nodes and forwarding

write requests to the RW node. It also provides high availability by

promoting one of the RO nodes to the new RW node if the current

RW node fails. The proxy node has multiple (usually 2) members

for high-availability and high-performance. The RW and RO nodes

share a disaggregated cloud storage, similar to many cloud-native

databases. The RW and RO nodes are connected by an RDMA-based

network for fast log shipment and timestamp fetching.

The core components of PolarDB-SCC are the hierarchical mod-

ification tracker, Linear Lamport timestamp, and the RDMA-based

log shipment protocol. The hierarchical modification tracker main-

tains the RW node’s modification at three levels: The global level

maintains the whole database’s latest modification timestamp and

table/page levels record some tables’/pages’ newest modification

timestamps. To perform a strongly consistent read on the RO node,

it will first check the RW node’s global level timestamp, then the

table and page level timestamps, Once one level is satisfied, it will

directly process the request and will not check the next one. It only

needs to wait for the log application on the requested pages when

the last level (page level) is unsatisfied.

Since the latest modification timestamps are maintained on the

RW node, the RO node has to fetch it from the RW node for each

request. Although the RDMA network is fast, the overhead is still

significant if there is a heavy load on the RO node. To overcome

the overhead on the timestamp fetching, we propose the Linear

Lamport timestamp. Based on the Linear Lamport timestamp, the

RO node can store the timestamp locally after fetching it from the

RW node. Any request arriving at the RO node earlier than 𝑇𝑆𝑟𝑜
can directly use the locally stored timestamp instead of fetching a

new one from the RW node. This can save many fetching requests

when the load is heavy on RO nodes.

At last, to further minimize the network overhead, we adopt

the one-sided RDMA for the log shipment and timestamp fetching.

We designed a one-sided RDMA-based log shipment protocol to

write the RW node’s log to the RO nodes. The one-sided RDMA

also saves a lot of CPU cycles during remote writing.

4 THE DESIGN OF POLARDB-SCC
4.1 Linear Lamport timestamp
Serving a strongly consistent read requires that a read request could

see all the committed data that happens before its start time. In

PolarDB-SCC, only the RW node can update data. Thus, the RW

node plays the role of the timestamp oracle (TSO). To guarantee a

strongly consistent read, the RO node has to fetch the RW node’s

latest timestamp and wait for the logs to be applied before handling

this request. If the loads are heavy on RO nodes, there will be many

concurrent timestamp fetching requests on the RW node, which

has a negative impact on the performance. Moreover, timestamp

fetching will induce extra overhead for read requests on RO nodes.

To avoid having intensive concurrent timestamp fetching opera-

tions, PolarDB-SCC designs a Linear Lamport timestamp, in which

one-time timestamp fetching from the RW node could conditionally

serve a batch of read requests on the initiating RO node.

The vanilla read-wait scheme requires each read request on

the RO node to fetch the RW node’s timestamp before the actual

execution. Actually, if a request finds that someone already fetched

a timestamp after its arrival time, it can directly reuse it instead of

fetching a new one, which can still guarantee strong consistency. So

one request can reuse other request’s timestamp if that timestamp

satisfies the above relations. We prove this with an illustration

shown in Figure 5. There is a request (𝑟2) on the RO node that start

fetching (𝑒2) the RW node’s timestamp at 𝑡2 and get the response

(𝑒3) with the RWnode’s timestamp (𝑇𝑆3𝑟𝑤) at 𝑡3. Then we can get the

happen-before relation of (𝑒2 → 𝑇𝑆3𝑟𝑤 → 𝑒3) 4. There is another
request 𝑟1 that arrives at the same RO node (𝑒1) at 𝑡1. By assigning

a local timestamp for each event that happens on the RO node, if

𝑟1 satisfies the relation of (𝑒1 → 𝑒2), we can infer that 𝑒1 → 𝑒2 →

4
The symbol→ indicates the happen-before relation.

𝑡! 𝑡"

Request 𝑟!

Request 𝑟"

RW node
𝑇𝑆#$%

arrives (𝑒!)

start fetching TS (𝑒!)

One RO node

𝑡#

start fetching TS (𝑒")

responsed (𝑒#)

Figure 5: The example of Linear Lamport timestamp

𝑇𝑆3𝑟𝑤 . So 𝑇𝑆
3

𝑟𝑤 could reflect all the updates that happen before 𝑒1.

As a result, if 𝑟1 tries to fetch the RW node’s timestamp after 𝑡3
(𝑒3 → 𝑒4), it can directly use 𝑇𝑆3𝑟𝑤 , and consequently, save one

timestamp fetching operation for 𝑟1. Actually, in this case, any

request arriving before 𝑡2 could all reuse the timestamp 𝑇𝑆3𝑟𝑤 if it

requires the RW node’s timestamp after 𝑡3. But there is a special

case in that one request arrives before 𝑡2 but tries to fetch the RW

node’s timestamp between 𝑡2 and 𝑡3. This request can be aware that

an in-flight fetching request was sent before it. So it will wait for

the response of the last fetching request and reuse its timestamp

later. If there are many such concurrent read requests, this design

can save a significant amount of overhead.

Based on this theory, we can cache the RW node’s timestamp

on the RO node and conditionally reuse it for some requests. To

implement this in PolarDB-SCC, whenever an RO node fetches

the RW node’s timestamp, it will cache this timestamp (𝑇𝑆𝑟𝑤) lo-

cally with the fetch operation’s start timestamp (𝑇𝑆𝑟𝑜) in a tuple

< 𝑇𝑆𝑟𝑤 ,𝑇𝑆𝑟𝑜 >. With this design, if a request on an RO node

requires the RW node’s timestamp, it will first check the tuple

< 𝑇𝑆𝑟𝑤 ,𝑇𝑆𝑟𝑜 > on this RO node. If the request arrives before𝑇𝑆𝑟𝑜 ,

the locally cached 𝑇𝑆𝑟𝑤 could be directly used by that request to

ensure strong consistency, i.e., it does not need to fetch a new

timestamp from the RW node.

For transactions in repeatable read or higher isolation levels, it

only acquires the RW node’s timestamp once for one transaction at

the beginning of that transaction. All requests in the transactionwill

use this timestamp for its strongly consistent reads. Subsequently, a

transaction arriving on an RO node first compares the transaction’s

start time with this RO node’s 𝑇𝑆𝑟𝑜 to check if the cached 𝑇𝑆𝑟𝑤 is

valid for the purpose of the transaction’s strongly consistent reads.

4.2 Hierarchical modification tracker
In the vanilla read-wait scheme, before handling a read request on

an RO node, it always has to wait for the logs that happen before a

specific timestamp (that is fetched from the RW node) are applied.

That means it always waits for all its local in-memory data to be

up-to-date, even if this request only accesses a small subset of the

data which may be already up-to-date. To avoid the unnecessary

wait for unrelated log applications with respect to a read request,

we propose a novel protocol for modification tracking. It tracks the

RW node’s latest modification timestamp on different levels, which

enables the RO node to check the timestamp at different levels and

only needs to wait for the requested data to be up-to-date.

Overview. Relational databases usually organize data into tables at
the logical level and manage the physical data at page units. There-

fore, we track the RW node’s latest modification at three levels: the

𝑇𝑆!" 𝐶𝑇𝑆#$% _!'𝐶𝑇𝑆()*

Hashed PID TS

MTT

𝐶𝑇𝑆#$% _!"

Hashed PID 𝑇𝑆!" 𝑇𝑆!#

MTT

Remote read

Remote read

RW RO(s)

Hashed TID TS Hashed TID 𝑇𝑆!" 𝑇𝑆!#

Figure 6: The design of hierarchical modification tracker

top level maintains the global database’s latest modification times-

tamp, and the second/third levels maintain the table/page’s latest

modification timestamps. Since consistency is usually considered

at the transaction level, we use the global committed timestamp as

the global level’s timestamp. But tracking a table/page’s commit

timestamp may induce much extra overhead because it requires

tracking all the modified pages/tables for each transaction and up-

dating their commit timestamp during committing. The mainstream

databases always generate the corresponding log for each update

on a table/page. We thus piggyback on the existing log sequence

number (LSN) as the table/page’s modification timestamp and it

will not incur extra overhead.

Data structures. Figure 6 illustrates the architecture of the hier-
archical modification tracker. The top level only needs to maintain

one timestamp, but the second/third levels have to maintain many

timestamps for different tables/pages. So we design themodification
tracking table (MTT) for the second/third levels to record the page’s

and table’s latest modification timestamp. The MTT is organized as

hash tables. The hash table’s key is the hashed value of the table

ID (TID) or page ID (PID), and the value is the corresponding latest

modification timestamp. The RW node will update the top-level

timestamp when a transaction commits and update the MTT ac-

cordingly when a related page/table is updated. The RO node could

fetch these three levels’ timestamps from the RW node and cache

them locally with its local timestamp (𝑇𝑆𝑟𝑜) for reusing (as intro-

duced in Section 4.1). So the RO node has the same data structures

of the three levels’ timestamps as the RW node, but it always has

one more field to store its local timestamp at each level.

Workflow. To perform a strongly consistent read on the RO node,

it will first check the global level’s timestamp, then the requested

table’s and page’s timestamps. Once one level is satisfied, it will

directly process the request and will not check the next one. It

only needs to wait for the log application when the last level (page

level) is unsatisfied. But there is some difference between the global

level and table/page level’s checking. Once a request is satisfied at

the global level, it will not check the timestamp during its follow-

ing data access because the whole database is up-to-date for the

current request. If a request is only satisfied on one requested ta-

ble/page, it has to check the timestamp when accessing the different

tables/pages. If the RO node’s log application is fast enough, many

requests can be satisfied at the global level. So these requests only

require one-time timestamp checking. This can save timestamp-

checking operations compared to the page/table level, which re-

quires checking the timestamp for each requested page. But when

the RO node’s log application can not keep up with the updates

on the RW node, the RO node may need to wait for the log ap-

plication for the most read requests. In this case, the table/page

level’s timestamp checking can help to avoid waiting on unrelated

data. Therefore, these three levels’ timestamps work together to

achieve low latency on RO nodes in different situations. Also, it can

benefit from the Linear Lamport timestamp (Section 4.1). For each

level’s timestamp checking, it can directly use the locally cached

timestamp if it is valid for the current request. This further saves

many tiemstamp fetching operations.

MTT’s implementation. To avoid having a large memory foot-

print, it’s not practical to store all pages’/tables’ newest modification

timestamps to MTT. Hence we organize MTT in a hash table. On

the RW node, multiple pages or tables will be hashed to the same

MTT slot. When an RO node fetches one timestamp from the RW

node’s MTT according to a hashed PID/TID, this timestamp may

belong to a different page/table due to the potential of hash colli-

sion. To avoid getting an elder timestamp, RO nodes only update

an MTT record’s timestamp when the newer one is larger than the

former value. In this case, the timestamp in an MTT’s slot is always

the largest one among all timestamps that map to this slot. Hence,

waiting for a larger timestamp to be applied still satisfies the strong

consistency requirement if a hash collision occurs in this process.

Typically, MTT’s size is only hundreds of megabytes, much smaller

than its buffer pool size (usually dozens of gigabytes).

Considerations for one-sided RDMA. Since one-sided RDMA

does not require the remote machine’s CPU’s involvement and

usually has lower latency compared to two-sided RDMA opera-

tions [33], we fully utilize the one-sided RDMA in the timestamp

fetching. One of the considerations for implementing MTT via a

hash table is that the hash table is more friendly to the one-sided

RDMA than other data structures (e.g., LRU or its variants). When

accessing data from a remote machine’s memory via one-sided

RDMA, it must know its memory address on the remote machine in

advance. So this requires that the RW node should not dynamically

change the data structure’s size or remove/add elements during

run time. Otherwise, the RO node can not know if an element is in

the RW node or its remote address. With the hash table design, the

RW node can allocate the memory space for the hash table when

the database starts and send its address to the RO node when it

registers to the RW node. The hash table’s size is fixed at startup.

When an RO node tries to read a page/table’s timestamp, the target

MTT record’s offset can be computed from the page/table ID. Then

it can remotely read the timestamp by combining the hash table

address and the offset without asking the RW node for the target

remote memory address. Thus the timestamp fetching can be done

via the one-sided RDMA to save the RW node’s CPU resource and

reduce network overhead for timestamp fetching. To overcome the

problem caused by hash collision, we only update the timestamp

when the incoming value is larger than the existing one. This can

still satisfy the strong consistency read as introduced above. On

the contrary, the LRU (or its variants) will dynamically insert/evict

elements, making one-sided RDMA unusable in this case. There

are also some RDMA-optimized hash table designs [15, 64]. How-

ever, they are often more complex and have more functionalities.

In PolarDB-SCC, MTT’s size is usually fixed at the start or is not

changed too often. Most operations are updates and reads. So we

use the vanilla hash table for MTT’s implementation.

The hierarchical modification tracker design requires more op-

erations for different levels’ timestamp fetching compared to the

vanilla single-level timestamp, but it does avoid the unnecessary

Log writers …

𝐿𝑆𝑁!"_$%&!%
𝐿𝑆𝑁!"_"!'%%()

apply

Log buffer 𝑳𝑺𝑵𝒔𝒕𝒂𝒓𝒕

𝑳𝑺𝑵𝒘𝒓𝒊𝒕𝒕𝒆𝒏

𝐿𝑆𝑁2&3 𝐿𝑆𝑁456 _!7

RW RO (s)

Remote write

Remote write

Figure 7: The design of the RDMA-based data shipment

wait for the log application. The timestamp could also be cached

on the RO nodes for reuse. This extra overhead can be amortized

on multiple requests. Moreover, the timestamp fetching is done via

the fast one-sided RDMA, usually in several microseconds.

4.3 RDMA-based log shipment
PolarDB-SCC utilizes the one-sided RDMA for the log shipment

to reduce network overhead and save CPU cycles. As shown in

Figure 7, each RO node also has a log buffer, and the RW node

remotely fills it in. The RO node’s log buffer size is the same as

the RW node. The RW node’s log data will always be remotely

written to the same offset in the RO node’s log buffer. The RW

node allocates one log writer for each RO node, responsible for

writing logs to the specific RO node via RDMA. Once a RO node is

registered to the RW node (e.g., for serving elastic workload), its

corresponding log writer is launched by the RW node.

If the log writers can not keep up with the log generation on the

RW node, the log buffer will be overwritten before being written to

RO nodes. Meanwhile, the RO node’s log buffer could also be over-

written if its log application could not keep up with the RW node’s

remote writing. Thus, careful designs are required for the remote

log writing on the RW node and the log reading on the RO node.

Figure 7 shows the design for such log writing and reading. On the

RW node, each log writer has two thread-local variables, 𝐿𝑆𝑁𝑠𝑡𝑎𝑟𝑡

and 𝐿𝑆𝑁𝑤𝑟𝑖𝑡𝑡𝑒𝑛 , representing that the logs between 𝐿𝑆𝑁𝑠𝑡𝑎𝑟𝑡 and

𝐿𝑆𝑁𝑤𝑟𝑖𝑡𝑡𝑒𝑛 have been successfully written to the corresponding

RO node. The global 𝐿𝑆𝑁𝑚𝑎𝑥 is the maximum LSN that has been

written to the local buffer. So, on the RW node, log data between

𝐿𝑆𝑁𝑤𝑟𝑖𝑡𝑡𝑒𝑛 and 𝐿𝑆𝑁𝑚𝑎𝑥 should be remotely written to the corre-

sponding RO node. Once 𝐿𝑆𝑁𝑠𝑡𝑎𝑟𝑡 and 𝐿𝑆𝑁𝑤𝑟𝑖𝑡𝑡𝑒𝑛 are updated,

they will be remotely written to the RO node’s 𝐿𝑆𝑁𝑟𝑤_𝑠𝑡𝑎𝑟𝑡 and

𝐿𝑆𝑁𝑟𝑤_𝑤𝑟𝑖𝑡𝑡𝑒𝑛 respectively. Therefore, on the RO node, only the

log data between 𝐿𝑆𝑁𝑟𝑤_𝑠𝑡𝑎𝑟𝑡 and 𝐿𝑆𝑁𝑟𝑤_𝑤𝑟𝑖𝑡𝑡𝑒𝑛 are valid for ap-

plying. Meanwhile, the RO node maintains 𝐿𝑆𝑁𝑚𝑎𝑥_𝑟𝑜 (maximum

LSN that has been applied), and then compares 𝐿𝑆𝑁𝑟𝑤_𝑤𝑟𝑖𝑡𝑡𝑒𝑛 with

𝐿𝑆𝑁𝑚𝑎𝑥_𝑟𝑜 to derive if some new logs are written to its log buffer.

Algorithm 1 shows how the RW node remotely writes logs to an

RO node’s log buffer. The log writer firstly initializes 𝐿𝑆𝑁𝑠𝑡𝑎𝑟𝑡 and

𝐿𝑆𝑁𝑤𝑟𝑖𝑡𝑡𝑒𝑛 with 𝐿𝑆𝑁𝑚𝑎𝑥 , and remotely writes them to the corre-

sponding RO node’s 𝐿𝑆𝑁𝑟𝑤_𝑠𝑡𝑎𝑟𝑡 and 𝐿𝑆𝑁𝑟𝑤𝑤𝑟𝑖𝑡𝑡𝑒𝑛 (line 2). Once

there are some new logs are appended to its log buffer (𝐿𝑆𝑁𝑚𝑎𝑥

becomes larger than 𝐿𝑆𝑁𝑤𝑟𝑖𝑡𝑡𝑒𝑛), it starts to write the logs between

𝐿𝑆𝑁𝑤𝑟𝑖𝑡𝑡𝑒𝑛 and 𝐿𝑆𝑁𝑚𝑎𝑥 to the corresponding RO node (lines 9-10).

Both before and after the log writing, the log writer has to check

if the log buffer is overwritten (line 11-22). Since it’s a ring buffer,

it can check if the difference between 𝐿𝑆𝑁𝑚𝑎𝑥 and 𝐿𝑆𝑁𝑤𝑟𝑖𝑡𝑡𝑒𝑛 is

larger than the buffer size to determine if the log buffer is over-

written. If yes, it has to reset 𝐿𝑆𝑁𝑠𝑡𝑎𝑟𝑡 and 𝐿𝑆𝑁𝑤𝑟𝑖𝑡𝑡𝑒𝑛 and restart

the write processing (line 14). If the log writing is successfully

Algorithm 1 The log write on the RW node

1: function LogWriteThread()

2: Initialize()

3: while True do
4: # wait for the new log

5: while 𝐿𝑆𝑁𝑤𝑟𝑖𝑡𝑡𝑒𝑛 >= 𝐿𝑆𝑁𝑚𝑎𝑥 do
6: Wait()

7: end while
8: # start to remotely write log

9: 𝑠𝑡𝑎𝑟𝑡_𝑙𝑠𝑛 ← 𝐿𝑆𝑁𝑤𝑟𝑖𝑡𝑡𝑒𝑛

10: 𝑒𝑛𝑑_𝑙𝑠𝑛 ← Min(𝐿𝑆𝑁𝑚𝑎𝑥 , 𝑠𝑡𝑎𝑟𝑡_𝑙𝑠𝑛 +𝑊𝑅𝐼𝑇𝐸_𝐿𝐸𝑁)
11: # check overwrite

12: if IfBufOverWritten(𝑠𝑡𝑎𝑟𝑡_𝑙𝑠𝑛) then
13: ReInitialize()

14: continue
15: end if
16: # actually write log to RO node

17: RDMARemoteWriteBuf(𝑠𝑡𝑎𝑟𝑡_𝑙𝑠𝑛, 𝑒𝑛𝑑_𝑙𝑠𝑛)

18: # check overwrite again

19: if IfBufOverWritten(𝑠𝑡𝑎𝑟𝑡_𝑙𝑠𝑛) then
20: ReInitialize()

21: continue
22: end if
23: # update 𝐿𝑆𝑁𝑤𝑟𝑖𝑡𝑡𝑒𝑛

24: 𝐿𝑆𝑁𝑤𝑟𝑖𝑡𝑡𝑒𝑛 ← 𝑒𝑛𝑑_𝑙𝑠𝑛

25: # remotely write 𝐿𝑆𝑁𝑤𝑟𝑖𝑡𝑡𝑒𝑛 to 𝐿𝑆𝑁𝑟𝑤_𝑤𝑟𝑖𝑡𝑡𝑒𝑛

26: RDMARemoteWriteWrittenLSN(𝑠𝑡𝑎𝑟𝑡_𝑤𝑟𝑖𝑡𝑡𝑒𝑛)

27: end while
28: end function

Algorithm 2 The log read on the RO node

1: function LogReadThread()

2: while True do
3: # wait for the new log

4: while 𝐿𝑆𝑁𝑚𝑎𝑥_𝑟𝑜 >= 𝐿𝑆𝑁𝑟𝑤_𝑤𝑟𝑖𝑡𝑡𝑒𝑛 do
5: Wait()

6: end while
7: # start to read log from 𝑠𝑡𝑎𝑟𝑡_𝑙𝑠𝑛 to 𝑒𝑛𝑑_𝑙𝑠𝑛

8: 𝑠𝑡𝑎𝑟𝑡_𝑙𝑠𝑛 ← 𝐿𝑆𝑁𝑚𝑎𝑥_𝑟𝑜

9: 𝑒𝑛𝑑_𝑙𝑠𝑛 ← 𝐿𝑆𝑁𝑟𝑤_𝑤𝑟𝑖𝑡𝑡𝑒𝑛

10: if IfBufValid(𝑠𝑡𝑎𝑟𝑡_𝑙𝑠𝑛, 𝑒𝑛𝑑_𝑙𝑠𝑛) == False then
11: 𝑙𝑜𝑔_𝑑𝑎𝑡𝑎 ← ReadFromStorage(𝑠𝑡𝑎𝑟𝑡_𝑙𝑠𝑛, 𝑒𝑛𝑑_𝑙𝑠𝑛)
12: else if IfBufOverWritten(𝑠𝑡𝑎𝑟𝑡_𝑙𝑠𝑛) then
13: 𝑙𝑜𝑔_𝑑𝑎𝑡𝑎 ← ReadFromStorage(𝑠𝑡𝑎𝑟𝑡_𝑙𝑠𝑛, 𝑒𝑛𝑑_𝑙𝑠𝑛)
14: else
15: 𝑙𝑜𝑔_𝑑𝑎𝑡𝑎 ← ReadLogBuffer(𝑠𝑡𝑎𝑟𝑡_𝑙𝑠𝑛, 𝑒𝑛𝑑_𝑙𝑠𝑛)
16: if IfBufOverWritten(𝑠𝑡𝑎𝑟𝑡_𝑙𝑠𝑛) then
17: 𝑙𝑜𝑔_𝑑𝑎𝑡𝑎 ← ReadFromStorage(𝑠𝑡𝑎𝑟𝑡_𝑙𝑠𝑛, 𝑒𝑛𝑑_𝑙𝑠𝑛)
18: end if
19: end if
20: # parse the log data and put the parsed data to queue

21: ParseLog(log_data)

22: 𝐿𝑆𝑁𝑚𝑎𝑥_𝑟𝑜 ← 𝑒𝑛𝑑_𝑙𝑠𝑛

23: end while
24: end function

completed, 𝐿𝑆𝑁𝑤𝑟𝑖𝑡𝑡𝑒𝑛 will be updated and remotely written to

the corresponding RO’s 𝐿𝑆𝑁𝑟𝑤_𝑤𝑟𝑖𝑡𝑡𝑒𝑛 (lines 24-26). Therefore, the

corresponding RO node could know if some new logs have been

written to its log buffer by checking its 𝐿𝑆𝑁𝑟𝑤_𝑤𝑟𝑖𝑡𝑡𝑒𝑛 . If the RW

node fails during the RDMA write, there may be some partial data

on the RO node. But these log data will not be used by the RO node

because its 𝐿𝑆𝑁𝑟𝑤_𝑤𝑟𝑖𝑡𝑡𝑒𝑛 is not updated by the RW node. The RO

node will read the corresponding log data from the shared storage.

Algorithm 2 illustrates how an RO node reads logs from its log

buffer. The ROnodemaintains the globalmaximumLSN (𝐿𝑆𝑁𝑚𝑎𝑥_𝑟𝑜)

that has been read from the log buffer or the shared storage). Once

𝐿𝑆𝑁𝑟𝑤_𝑤𝑟𝑖𝑡𝑡𝑒𝑛 is larger than 𝐿𝑆𝑁𝑚𝑎𝑥_𝑟𝑜 , the log reader starts to

read the logs (between 𝐿𝑆𝑁𝑚𝑎𝑥_𝑟𝑜 and 𝐿𝑆𝑁𝑟𝑤_𝑤𝑟𝑖𝑡𝑡𝑒𝑛) from the

log buffer. But, before initiating this read process, it has to check if

the corresponding logs are valid (line 10). This is because the logs

before 𝐿𝑆𝑁𝑟𝑤_𝑠𝑡𝑎𝑟𝑡 will be considered invalid. It further checks if

these logs are overwritten before and after reading the log (line

12-19). If the log buffer is invalid or overwritten, it has to read the

redo log from the shared cloud storage instead. After reading, the

RO node can parse the logs being read and register the parsed log

entries to another queue for the log application (line 21). Finally, it

updates 𝐿𝑆𝑁𝑚𝑎𝑥_𝑟𝑜 to the latest LSN that has been read (line 22).

4.4 Read-your-writes consistency
In a read-write transaction, however, there is a challenge that we

have to guarantee that the read requests on the RO nodes must

read the updates in the same transaction that happened on the RW

node, which is called read-your-writes consistency. This is a general
problem for a database or storage cluster and widely addressed by

many deployed systems and proposed prototypes [20, 41, 43, 46, 48,

50]. PolarDB-SCC follows a similar design to guarantee read-your-

writes consistency. Each write in the PolarDB-SCC would generate

the corresponding redo log with a unique incremental LSN. The

RW node returns the LSN to the proxy node for each write request.

Before sending a following read request in the same transaction to

the RO node, the proxy node has to check themaximum applied LSN

on the RO nodes to determine which RO nodes could serve this read

request. If some RO nodes have satisfied this requirement, it will

send the read request to one of these RO nodes by the load balancer.

If none is available, it will be blocked to wait for the LSN to be

applied on one of the RO nodes or eventually forwarded to the RW

node after a timeout period. PolarDB-SCC provides different options

for applications to handle this situation. One is that the proxy could

directly forward the read request to the RW node without waiting

if no RO node satisfies the above condition. Another option is to

send all read requests to the RW node without checking if there is

an update before these reads in the same transaction.

4.5 High availability and recovery
PolarDB-SCC only piggybacks on existing redo logs for data syn-

chronization without any changes to the logging scheme. The

RDMA-based log shipment also does not change the existing log

buffer’s management. Before committing a transaction, PolarDB-

SCC still synchronizes the corresponding logs to the shared cloud

storage as usual to ensure the transaction’s durability with WAL.

Therefore, PolarDB-SCC has no impact on the existing recovery

policy. If an RO node fails, the corresponding log writer on the RW

node will find the RDMA network to this RO node is disconnected

and stop writing logs to this RO node. Once this RO node restarts

and registers to the RW node, that log writer will resume to work.

The RO node will read the required logs from the shared cloud

storage if they are not in its log buffer. If the RW node fails, one of

the RO nodes will be promoted to be the new RW node, following

the same procedure as that in a cloud-native database.

4.6 Compatibility
The hierarchical modification tracker could also be applied to other

databases, such as Aurora, Socrates, and MySQL. These systems

also organize the physical data at the page unit. So, they can also

maintain the table/page’s latest modification timestamp on the RW

node or even directly apply MTT design to their RW nodes. This

design could also be applied to key-value stores. The RW node

could record the KV pairs’ modification timestamps and could be

fetched by RO nodes. Linear Lamport timestamp and RDMA-based

log shipment are more general designs. They are not database-

specific. These theories and implementation could also be used in

other databases or storage systems.

5 EVALUATION
5.1 Experimental setup
Test platform. PolarDB-SCC is implemented with a commercial

cloud-native database (PolarDB). It’s in production and commer-

cially available at Alibaba Cloud. Our evaluations are all conducted

in a cloud environment. In our test, the underlying physical ma-

chines are equipped with 2 Intel Xeon Platinum 8269CY CPUs and

755GB DDR4 DRAM, running CentOS-7 OS. These physical ma-

chines are connected by a 50Gbps Mellanox ConnectX-4 network.

System configurations. At Alibaba Cloud, the most popular type

of PolarDB instances is 8 vCPUs and 32GB memory (8c32g), and it’s
usually deployed with one RW node and one RO node. So we test

PolarDB-SCC with the same configuration in most test cases. We

further evaluate PolarDB-SCC’s performance with larger instances

with 88 vCPUs and 710GB memory (88c710g) and more RO nodes

(up to 8). The buffer pool size is 24GB for the 8c32g instance and

533GB for the 88c710g instance. The log buffer size is 64MB and

2GB on 8c32g and 88c710g instances, respectively. The MTT’s size

is 128MB on 8c32g instances and 2GB on 88c710g instances. Finally,

we adopt the read committed isolation in all systems during the

evaluation. This is the default isolation level for many databases

and is widely used for many user applications. Note that this is also

the isolation level that may present the most overheads for ensuring

strong consistency (i.e., most challenging) because it requires the

RW node’s latest timestamp for each query.

Baseline setup. Since PolarDB-SCC is implemented in PolarDB,

PolarDB is the natural baseline. We configure PolarDB in three

ways to compare with PolarDB-SCC:

• PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 : This is the default configuration in PolarDB. It

handles all the read and write requests on the RW node. The RO

node is only used for failover (providing high availability).

• PolarDB𝑟𝑒𝑎𝑑−𝑤𝑎𝑖𝑡 : This is the current configuration used to pro-

vide strongly consistent reads when needed (e.g., for e-commerce

and trading transactions in Alibaba). The RO nodes use the

vanilla read-wait scheme to achieve a strongly consistent read.

• PolarDB𝑠𝑡𝑎𝑙𝑒−𝑟𝑒𝑎𝑑 : RO nodes directly process the read requests

without waiting for any log application. It may return stale data.

Furthermore, we also compare PolarDB-SCC with MGR (MySQL

Group Replication) and two popular commercial databases, DB-A

and DB-C. Since DB-A does not support a strongly consistent read

on RO nodes, we use its multi-master version in our evaluation.

Workloads. We evaluate PolarDB-SCC with three standard OLTP

benchmarks (Sysbench [25], TPC-C [13] and TATP [38]) and a real

production workload from Alibaba (with a profiled mix of 3:2:5

insert:update:select ratio). For Sysbench, we set up a database with

100 tables, each with 0.5 million records on 8c32g and 10 million

records on 88c710g. Unless otherwise stated, requests are issued
with uniform distribution and adopt the default values for other

configurations. We configure TPC-C with 60 warehouses and run

its read-only transactions on RO nodes (by following the previous

work [56]). For TATP, we configure it with 100K subscribers.

5.2 Overall performance
Sysbench’s read-write workload. As PolarDB-SCC primarily

targets strongly consistent reads in the read-write workloads, we

start with Sysbench’s read-write workloads. Figure 8(a) shows the

performance with uniform distribution. It indicates that PolarDB-

SCC always has similar performance (both throughput and latency)

to PolarDB𝑠𝑡𝑎𝑙𝑒−𝑟𝑒𝑎𝑑 under different workload pressures for the

following reasons: First, most of the RO node’s potential timestamp

fetching requests hit its cached𝐶𝑇𝑆𝑟𝑤_𝑚𝑎𝑥 , saving a lot of network

overhead. Second, PolarDB-SCC avoids much unnecessary wait

time for the log application. Third, the one-sided RDMA-based log

shipment and timestamp fetching speed up the data transfer and

eliminate the extra CPU overhead. These enable PolarDB-SCC to

achieve strongly consistent reads with little extra overhead.

When the workload pressure is light (e.g., 16 and 32 threads),

PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 ’s performance is nearly identical to others. But it

becomes saturated at 64 threads and performs worse than PolarDB-

SCC and PolarDB𝑠𝑡𝑎𝑙𝑒−𝑟𝑒𝑎𝑑 because their RO node could help

process read requests. PolarDB𝑟𝑒𝑎𝑑−𝑤𝑎𝑖𝑡 ’s throughput drops by

11.96% compared with PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 at 16 threads because its

RW node is not saturated while its RO node induces extra over-

head. When increasing the number of threads, PolarDB𝑟𝑒𝑎𝑑−𝑤𝑎𝑖𝑡

can come up with PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 because it can benefit from pro-

cessing reads on the RO node. But its throughput is still not better

than that of PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 . This is because all the read requests

on the RO node will incur the same amount of timestamp query

requests on the RW node. This makes the RW node the bottle-

neck. PolarDB𝑟𝑒𝑎𝑑−𝑤𝑎𝑖𝑡 ’s median latency is much better than that

of PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 at 256 threads. This is because PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡

is saturated under such heavy pressure. However, compared with

PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 and PolarDB𝑟𝑒𝑎𝑑−𝑤𝑎𝑖𝑡 , PolarDB-SCC increases the

throughput by up to 1.82× and 1.70×, and reduces the median la-

tency by up to 3.03× and 1.42×, respectively.
Figure 8(b) shows the results under the Zipfian distribution. It has

a similar trend to that of the uniform distribution. As our evaluation

targets CPU-bound scenarios, neither uniform nor distribution

workload is involved in storage I/O (except for the write-ahead

log persistence). All of their requests could be finished in memory,

which makes nearly no performance difference between a uniform

and a Zipfian distribution. There is only a small difference in the

256-thread testing that PolarDB-SCC’s performance drops 11.03%

compared to PolarDB𝑠𝑡𝑎𝑙𝑒−𝑟𝑒𝑎𝑑 . This is because some hot data are

frequently updated on the RW node, and at the same time, many

16 32 64 128 256
0

50

100

150

T
h

ro
u

g
h

p
u

t
(K

-Q
P

S
)

PolarDB
default

 PolarDB
read-wait

 PolarDB-SCC PolarDB
stale-read

16 32 64 128 256
0

1

2

3

4

M
ed

ia
n

 la
te

n
cy

 (
m

s)

16 32 64 128 256
Number of threads

0

50

100

150

T
h

ro
u

g
h

p
u

t
(K

-Q
P

S
)

16 32 64 128 256
Number of threads

0

1

2

3

4

M
ed

ia
n

 la
te

n
cy

 (
m

s)

(a) Uniform distribution

(b) Zipfian distribution

Figure 8: Performance of Sysbench’s read-write workloads

Table 3: Tail latency comparison within different systems

Latency (ms)

Uniform Zipfian

P90 P95 P99 P90 P95 P99

PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 3.82 5.09 9.22 3.82 5.18 9.73

PolarDB𝑟𝑒𝑎𝑑−𝑤𝑎𝑖𝑡 3.43 5.67 14.73 3.36 5.77 15.55

PolarDB-SCC 2.11 3.68 8.43 2.07 3.62 8.58

PolarDB𝑠𝑡𝑎𝑙𝑒−𝑟𝑒𝑎𝑑 1.82 3.25 7.56 1.76 3.13 7.43

threads are accessing them on the RO node. That causes a longer

time to wait for the log application. But PolarDB-SCC still increases

the throughput respectively by up to 1.79× and 1.68×, and reduces

the median latency respectively by up to 3.08× and 1.42×, compared

with PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 and PolarDB𝑟𝑒𝑎𝑑−𝑤𝑎𝑖𝑡 .

We report the tail latency in Table 3. Due to the space limita-

tion, we only show the tail latency within 128-threads testing, but

other configurations have a similar trend. PolarDB𝑟𝑒𝑎𝑑−𝑤𝑎𝑖𝑡 ’s P90

latency is lower than PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 , because PolarDB𝑟𝑒𝑎𝑑−𝑤𝑎𝑖𝑡 ’s

RO node can process some read requests in this heavy workload,

while PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 handle all requests on the RW node, making

RW node overloaded. In PolarDB𝑟𝑒𝑎𝑑−𝑤𝑎𝑖𝑡 , the request on the RO

node has to fetch the timestamp from the RW node and wait for

the log application if needed. That makes it have much higher P95

and P99 latency than PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 . This higher tail (P95 and P99)

latency makes PolarDB𝑟𝑒𝑎𝑑−𝑤𝑎𝑖𝑡 have no improvement in through-

put compared with PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 , although its median and P90

latencies are lower. However, PolarDB-SCC’s P90, P95, and P99

latencies are all lower than PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 and PolarDB𝑟𝑒𝑎𝑑−𝑤𝑎𝑖𝑡

(by up to 1.84× and 1.82× respectively). Although PolarDB-SCCmin-

imizes the extra overhead on RO nodes, it inevitably has some extra

overhead induced by RDMA communication and log application.

So its tail latency is slightly higher than that of PolarDB𝑠𝑡𝑎𝑙𝑒−𝑟𝑒𝑎𝑑 .

TPC-C performance. Figure 9 gives TPC-C’s throughput and

P90 latency. Since the full TPC-C mix is a read-write workload,

we run TPC-C’s read-only transactions on the RO node (but no

load on the RO node in PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡) following the setup in

QueryFresh [56]. As expected, all systems have a similar perfor-

mance on the RW node. In the PolarDB𝑟𝑒𝑎𝑑−𝑤𝑎𝑖𝑡 , the RO node’s

RW node RO node
0

100

200

300

400

500

T
h

ro
u

g
h

p
u

t
(K

-T
P

M
)

PolarDB
default

 PolarDB
read-wait

 PolarDB-SCC PolarDB
stale-read

RW node RO node
0

10

20

30

40

50

P
90

 la
te

n
cy

 (
m

s)

Figure 9: Performance of TPC-C workload

throughput is not as that high as in the SysBench workload. So its

RO node’s timestamp fetching operations have little impact on its

RW node’s performance. That makes its RW node have a similar

performance to other systems. That is different from the results

in the SysBench workload. However, its RO node’s throughput

is only 39.6% of PolarDB-SCC’s due to its high overhead, while

PolarDB-SCC performs similarly to PolarDB𝑠𝑡𝑎𝑙𝑒−𝑟𝑒𝑎𝑑 .

TATP performance. Figure 10 shows TATP’s performance. When

the workload is not heavy (16 or 32 threads), the RW node is not the

bottleneck. These four systems (except PolarDB𝑟𝑒𝑎𝑑−𝑤𝑎𝑖𝑡) have a

similar performance. But PolarDB𝑟𝑒𝑎𝑑−𝑤𝑎𝑖𝑡 performs worse due to

its extra overhead on the RO node. When the workload becomes

heavy (128 or 256 threads), PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 is saturated, while

PolarDB-SCC and PolarDB𝑠𝑡𝑎𝑙𝑒−𝑟𝑒𝑎𝑑 ’s performances are increas-

ing. PolarDB𝑟𝑒𝑎𝑑−𝑤𝑎𝑖𝑡 ’s benefits exceed costs in the heavier work-

load, and it performs slightly better than PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 . PolarDB-

SCC still shows a nearly identical performance to PolarDB𝑠𝑡𝑎𝑙𝑒−𝑟𝑒𝑎𝑑 ,
improving the throughput by up to 1.89× and 1.61×, while de-

creasing median latency by up to 2.30× and 1.35× comparing with

PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 and PolarDB𝑟𝑒𝑎𝑑−𝑤𝑎𝑖𝑡 .

16 32 64 128 256
Number of threads

0

50

100

150

200

T
h

ro
u

g
h

p
u

t
(K

-Q
P

S
)

PolarDBdefault PolarDBread-wait PolarDB-SCC PolarDBstale-read

16 32 64 128 256
Number of threads

0

0.2

0.4

0.6

0.8

1

M
ed

ia
n

 la
te

n
cy

 (
m

s)

Figure 10: Performance of TATP benchmark

Comparedwith commercial databases. Figure 11 shows the per-
formance comparison with some commercial databases by running

SysBench’s read-write workload on the RW node and read-only

workload on the RO node with 64 threads. Due to the high cost

for strongly consistent reads on the RO node, MGR’s RO node’s

throughput is much slower than others and has a much higher

latency. DB-C utilizes the read-wait design on the RO node to guar-

antee strong consistency and cause a longer latency and lower

throughput on the RO node. DB-A shows a much lower latency

than MGR and DB-C, but is still much higher than PolarDB-SCC.

PolarDB-SCC’s RO node’s throughput is 2.45× higher than DB-A,

and its median latency is only 25.8% of that in DB-A.

Production workload. We then run a trading service workload in

Alibaba’s production environment, in which 50% of the requests are

reads. Figure 12 shows the throughput and ROnode’s stale read ratio

RW node RO node
0

20

40

60

80

T
h

ro
u

g
h

p
u

t
(K

-Q
P

S
)

MGR DB-C DB-A PolarDB-SCC

19.0 4.2

RW node RO node
0

1

2

3

M
ed

ia
n

 la
te

n
cy

 (
m

s)

Figure 11: Comparison with commercial databases

(how many reads get stale data). As expected, PolarDB-SCC per-

forms similarly to PolarDB𝑠𝑡𝑎𝑙𝑒−𝑟𝑒𝑎𝑑 , but PolarDB-SCC completely

avoids stale read while PolarDB𝑠𝑡𝑎𝑙𝑒−𝑟𝑒𝑎𝑑 ’s stale read ratio is about
98% on average. PolarDB𝑟𝑒𝑎𝑑−𝑤𝑎𝑖𝑡 and PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 also elimi-

nate stale read, but their throughput is only 64% of PolarDB-SCC’s

on average. PolarDB-SCC achieves a strongly consistent read on

the RO node without sacrificing performance.

0 50 100 150 200 250
0

50

100

T
h

ro
u

g
h

p
u

t
(K

-Q
P

S
) PolarDBdefault PolarDBread-wait PolarDB-SCC PolarDBstale-read

0 50 100 150 200 250
Time (s)

0

50

100

R
O

 s
ta

le
 r

at
io

 (
%

)

Figure 12: Performance of Alibaba product workload

5.3 Breakdown analysis
To further understand the performance impact of PolarDB-SCC ’s

individual optimizations, Figure 13 breaks down PolarDB-SCC’s

improvement by incrementally enabling its individual optimization

technique. In this test, it has one RW node and one RO node, and

runs Sysbench’s read-write workload. We start with the vanilla

read-wait scheme and gradually add on our optimizations. We first

add the Linear Lamport timestamp (LLT) optimization and then

the hierarchical modification tracker (HMT). Finally, we add the

RDMA-based log shipment. By reusing timestamps, LLT signifi-

cantly reduces the number of timestamp fetching. It improves the

throughput by 18.37%-39.73%. We further deploy HMT to eliminate

the unnecessary waits on unrelated log applications, continuing to

improve the throughput by 20.00%-27.50%. Finally, we make further

efforts to ship the log via the one-sided RDMA. But it only improves

the throughput by about 4%, because the log shipment is no longer

the bottleneck when LLT and HMT are both enabled. The median

latency reduction shows a similar trend to that of the throughput.

Next, we show the performance breakdown with more RO nodes

in Figure 14. We run Sysbench’s read-write workload on the RW

node and read-only workload on each RO node with 64 client

threads. We also individually enable the different optimizations,

similar to Figure 13. Figure 14 shows that the improvement of the

individual optimization is more significant when having more RO

32 threads 64 threads 128 threads
0

50

100

150

T
h

ro
u

g
h

p
u

t
(K

-Q
P

S
)

Read-wait LLT LLT + HMT LLT + HMT + RDMA Log (PolarDB-SCC)

32 threads 64 threads 128 threads
0

0.2

0.4

0.6

M
ed

ia
n

 la
te

n
cy

 (
m

s)
Figure 13: Breakdown analysis: different number of threads

2 RO 4 RO 8 RO
0

200

400

600

T
h

ro
u

g
h

p
u

t
(K

-Q
P

S
)

Read-wait LLT LLT + HMT LLT + HMT + RDMA Log (PolarDB-SCC)

2 RO 4 RO 8 RO
0

0.5

1

1.5

2

2.5

M
ed

ia
n

 la
te

n
cy

 (
m

s)

Figure 14: Breakdown analysis: different number RO nodes

nodes. When having 8 RO nodes, LLT improves the throughput by

2.56× compared with the read-wait policy, while only 1.37× and

1.56× at 2 RO nodes and 4 RO nodes. HMT can further improve the

throughput by up to 1.67×. Lastly, the RDMA-based log shipment

additionally makes an improvement of about 6%.

5.4 High scalability
As PolarDB-SCC could provide strong consistency on RO nodes, it’s

scalable to improve the performance by processing read requests

on RO nodes. Figure 15 shows the scalability of PolarDB-SCC on a

small instance (8c32g), by running Sysbench’s read-write workload

on the RW node and read-only workload on each RO node, both

with 64 client threads. But for PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 , all workloads have

to be processed on the RW node (to ensure strong consistency). It

shows that PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 ’s throughput does not increase with

more RO nodes because its RO nodes do not handle any requests.

However, the latency increases as there are more read requests on

the RW node when adding more RO nodes. PolarDB𝑟𝑒𝑎𝑑−𝑤𝑎𝑖𝑡 only

improves the throughput by 21.05% when increasing the number

of RO nodes from 1 to 8. When having 8 RO nodes, it may have 512

concurrent requests on the RW node to get the timestamp, inducing

too much overhead on the RW node. The RW node will be the

bottleneck, making it hard to improve performances even having

more RO nodes. However, PolarDB𝑠𝑡𝑎𝑙𝑒−𝑟𝑒𝑎𝑑 has no extra overhead

for read requests on RO nodes, and PolarDB-SCCminimizes various

overhead with its optimizations, achieving similar performance and

scalability to PolarDB𝑠𝑡𝑎𝑙𝑒−𝑟𝑒𝑎𝑑 does. So both PolarDB-SCC and

PolarDB𝑠𝑡𝑎𝑙𝑒−𝑟𝑒𝑎𝑑 increase the throughput when increasing the

number of RO nodes. With 8 RO nodes, PolarDB-SCC’s throughput

is 3.73× higher than 1 RO node, while the latency is still comparable.

Its throughput only drops 7.16% compared with PolarDB𝑠𝑡𝑎𝑙𝑒−𝑟𝑒𝑎𝑑 .
The median latency shows a similar trend. Furthermore, among the

8 RO nodes, their QPS ranges from 51.1K to 66.0K, with an average

value of 56.12K, showing good load balancing.

We then show the scalability on larger instances (88c710g) in

Figure 16 by running Sysbench’s read-write workload. Every time

1 2 4 8
Number of RO nodes

0

200

400

600

T
h

ro
u

g
h

p
u

t
(K

-Q
P

S
)

PolarDB
default

 PolarDB
read-wait

 PolarDB-SCC PolarDB
stale-read

1 2 4 8
Number of RO nodes

0

1

2

3

4

M
ed

ia
n

 la
te

n
cy

 (
m

s)

Figure 15: Performance with different number of RO nodes

660T-1RO 990T-2RO 1650T-4RO
0

500

1000

1500

T
h

ro
u

g
h

p
u

t
(K

-Q
P

S
)

PolarDB
default

 PolarDB
read-wait

 PolarDB-SCC PolarDB
stale-read

660T-1RO 990T-2RO 1650T-4RO
0

0.5

1

1.5

M
ed

ia
n

 la
te

n
cy

 (
m

s)

Figure 16: Performance on large database instances with dif-
ferent numbers of RO nodes

add one more RO node, we increase the number of client threads by

330 to saturate them. The x-axis represents the numbers of client

threads and RO nodes, e.g., 𝑥T-𝑦ROmeans 𝑥 client threads and𝑦 RO

nodes. Similar to Figure 15, PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 and PolarDB𝑟𝑒𝑎𝑑−𝑤𝑎𝑖𝑡

have no improvement on the throughput by increasing the num-

ber of RO nodes, but cause a higher latency due to heavier load.

However, PolarDB-SCC still provides a comparable throughput and

latencywith PolarDB𝑠𝑡𝑎𝑙𝑒−𝑟𝑒𝑎𝑑 . But, when runningwith 1650 client
threads, the RW node could be saturated and become the bottleneck,

therefore, the performance improvement of 4 RO nodes is not as

significant as that on 8c32g instances. Nevertheless, PolarDB-SCC

still improves the throughput by up to 3.08× and 2.18×, compared

with PolarDB𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 and PolarDB𝑟𝑒𝑎𝑑−𝑤𝑎𝑖𝑡 .

5.5 Support on serverless
PolarDB-SCC can provide a unified endpoint (e.g., via a proxy) that

promises strong consistency for applications. Users can connect

applications to that endpoint and increase/decrease the number of

RO nodes at the backend without any changes to applications. They

only need to pay for the necessary RO node resources to achieve

high performance. PolarDB’s serverless feature has the ability to

dynamically adjust the number of RO nodes for dynamic workloads.

Integrated with PolarDB-SCC, the application seems connected to

a single RW node with dynamic resources in the background while

guaranteeing strong consistency. We test this scenario in Figure 17.

In this test, the workload becomes heavier at 300s, 600s, and 900s.

The database cluster will dynamically add more RO nodes in the

background and the throughput is quickly improved in an almost-

linear fashion when more RO nodes are added to the cluster.

5.6 Use-case study on the cloud
Many customers from different vertical industry sectors (e.g., fi-
nance, e-commerce, telecom, etc) on Alibaba Cloud have already

300 600 900
Time (s)

0

50

100

150

200

T
h

ro
u

g
h

p
u

t
(K

-Q
P

S
)

1 RW 1 RW + 1 RO 1 RW + 2 RO 1 RW + 4 RO

Figure 17: PolarDB-SCC with serverless

enjoyed the benefit of running their mission-critical workloads

on PolarDB-SCC, especially for those with strong consistency re-

quirements. In the interest of space, we elaborate one particular

customer case here in this paper. This customer deploys their intel-

ligent logistic application in a microservices way. One up-level task

will be split into several stages and processed by different microser-

vices in order. Once one stage is finished, it will notify the next

one to process. The next one will read the previous updates from

the database for the following processing. Since microservices are

independent components, they highly rely on the database’s strong

consistency to guarantee the task can be done correctly. If the later

stage cannot read the latest updates, it can not correctly process

its own stage and cause problems to up-level applications. Without

strongly consistent reads on RO nodes, they always send all read

requests to the RW node, leaving the RO node idle (only used for

high availability) and making the RW node bottleneck. Although

the naive read-wait scheme achieves a strongly consistent read, the

overhead is too high to be accepted by them. However, by deploying

PolarDB-SCC, they can send all read requests to the RO node. It can

guarantee a strong consistency without noticeable extra overhead.

As a result, the RO node’s resources are highly utilized and improve

the total throughput by about 60%.

6 RELATEDWORKS
Cloud-native database clusters. Aurora [55], Socrates [6], and
PolarDB [32] are the mainstream cloud-native database clusters,

which consist of one primary read-write (RW) node and one or

more read-only (RO) nodes. The RW node synchronizes the log to

the shared storage before committing a transaction. The RO nodes

asynchronously read logs from the shared storage and apply them

to keep the buffered data up to date. Since the log application is

asynchronous, the RO node’s buffered data may fall behind that

of the RW node, which could cause stale reads on the RO node.

PolarDB provides a strongly consistent read option on RO nodes,

implemented with the naive read-wait scheme. But it causes a high

overhead for the read request on the RO nodes. However, PolarDB-

SCC aims to minimize the extra overhead for the strongly consistent

reads on the RO nodes.

Variants of MySQL clusters. MySQL is a most common and

widely deployed monolithic databases clusters [10, 17]. MySQL

Group Replication (MGR) [37] enables users to create highly-available

and fault-tolerant database clusters. MGR synchronizes the data be-

tween different nodes with the statement log. It supports both stale

reads and consistent reads on RO nodes. However, the consistent

reads on RO nodes have a very poor performance. Percona XtraDB

cluster [42] and Galera Cluster [19] are the two popular database

clusters based on MySQL. They are both compatible with Prox-

ySQL [45] and HAProxy [21] to achieve high availability and read-

write split. But they all do not support the low-latency, strongly

consistent reads on the RO nodes [46, 53].

Other databases. Spanner [12] and TiDB [22] are distributed data-

base clusters based on data sharding. They rely on the consensus

algorithm (e.g., Paxos [29] and Raft [40]) to keep the data consis-

tent among the nodes, in which the log is shipped with TCP/IP

networks. Their follower nodes could still return stale data, while

strongly consistent reads sacrifice much performance. Amazon

Dynamo [49] is a fully managed NoSQL database. It supports even-

tually consistent reads by default, while strongly consistent reads

have much higher latency and is not supported on global secondary

indexes [3]. QueryFresh [56] tries to minimize the replica node’s

staleness, but it may still return stale data and only guarantee even-

tual consistency. However, PolarDB-SCC completely avoids stale

reads on RO nodes with a strong consistency guarantee, and it’s

also orthogonal with QueryFresh’s design.

Distributed transaction optimizations. There are also some

works to improve the distributed transaction protocols for higher

performance and scalability, or stronger consistency [16, 23, 31,

36, 52, 57, 59–62]. However, PolarDB-SCC does not rely on the

distributed transaction protocol. It only has one RW node that can

process updates. The RW node maintains the global transaction or-

dering. The RW node and RO nodes share the storage that provides

consistency and high availability. RO nodes only rely on the RW

node’s latest commit timestamp for the strongly consistent read.

Shared-memory/cache coherency in database clusters. There

are some database clusters that adopt a shared-memory (or shared-

cache) for performance or consistency requirements. They also

face in-memory data consistency challenges. Oracle RAC’s Cache

Fusion technique [27] utilizes the high-speed inter-node message

to keep data consistent. IBM’s DB2 pureScale [8, 24] employs cen-

tralized lock management to control global cache access. PolarDB

Serverless [11] proposes a cache invalidation mechanism to ensure

cache coherency. However, these works are based on the shared-

memory/cache design and their policies are all on the critical path of

the writes, and may have a negative impact. PolarDB-SCC doesn’t

have a shared memory/cache. It only needs to keep the RO node’s

in-memory data up-to-date at the time of accessing it.

7 CONCLUSION
We design and implement PolarDB-SCC, a low-latency, strongly

consistent cloud-native database. We first propose the hierarchical

modification tracker, enabling the RO node to check timestamps

at different levels and eliminating the wait time on unrelated log

applications. We then design the Linear Lamport timestamp to save

the timestamp fetching operations on RO nodes. At last, we design

the RDMA-based log shipment to minimize the network overhead

and CPU usage. Based on these designs, PolarDB-SCC achieve

strongly consistent reads without noticeable extra overhead.

REFERENCES
[1] Marcos K Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi,

Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian,

and Michael Wei. 2017. Remote Memory in the Age of Fast Networks. In Pro-
ceedings of the 2017 Symposium on Cloud Computing. 121–127.

[2] Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wyatt Lloyd, and Kaushik

Veeraraghavan. 2015. Challenges to Adopting Stronger Consistency at Scale. In

15th Workshop on Hot Topics in Operating Systems (HotOS XV).
[3] Amazon. 2012. Read Consistency of DynamoDB. https://docs.aws.amazon.com/

amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html.

"[accessed-April-2022]".

[4] Amazon. 2022. Amazon Aurora Serverless. https://aws.amazon.com/rds/aurora/

serverless/.

[5] Amazon. 2022. Replication with Amazon Aurora. https://docs.aws.amazon.com/

AmazonRDS/latest/AuroraUserGuide/Aurora.Replication.html. "[accessed-April-

2022]".

[6] Panagiotis Antonopoulos, Alex Budovski, Cristian Diaconu, Alejandro Hernan-

dez Saenz, Jack Hu, Hanuma Kodavalla, Donald Kossmann, Sandeep Lingam,

Umar Farooq Minhas, Naveen Prakash, et al. 2019. Socrates: The New SQL Server

in the Cloud. In Proceedings of the 2019 International Conference on Management
of Data. 1743–1756.

[7] AWS. 2019. Global Tables: How It Works. https://docs.aws.amazon.com/

amazondynamodb/latest/developerguide/globaltables_HowItWorks.html.

"[accessed-April-2022]".

[8] Vlad Barshai, Yvonne Chan, Hua Lu, Satpal Sohal, et al. 2012. Delivering Conti-
nuity and Extreme Capacity with the IBM DB2 pureScale Feature. IBM Redbooks.

[9] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,

Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, et al. 2013.

TAO: Facebook’s Distributed Data Store for the Social Graph. In 2013 USENIX
Annual Technical Conference (USENIX ATC 13). 49–60.

[10] Wei Cao, Feng Yu, and Jiasen Xie. 2014. Realization of the Low Cost and High

Performance MySQL Cloud Database. Proceedings of the VLDB Endowment 7, 13
(2014), 1742–1747.

[11] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, ShengWang, Qingda Hu, Xun-

tao Cheng, Zongzhi Chen, Zhenjun Liu, Jing Fang, et al. 2021. Polardb Serverless:

A Cloud Native Database for Disaggregated Data Centers. In Proceedings of the
2021 International Conference on Management of Data. 2477–2489.

[12] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,

Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,

Peter Hochschild, et al. 2013. Spanner: Google’s Globally Distributed Database.

ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1–22.
[13] Transaction Processing Performance Council. 1992. On-Line Transaction Pro-

cessing Benchmark. https://www.tpc.org/tpcc/. "[accessed-April-2022]".

[14] Sudipto Das, Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija Jovanovic,

Vivek R Narasayya, Miodrag Radulovic, Maja Stikic, Gaoxiang Xu, and Surajit

Chaudhuri. 2019. Automatically Indexing Millions of Databases in Microsoft

Azure SQL Database. In Proceedings of the 2019 International Conference on Man-
agement of Data. 666–679.

[15] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hod-

son. 2014. FaRM:Fast Remote Memory. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). 401–414.

[16] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B Nightingale, Matthew

Renzelmann, Alex Shamis, Anirudh Badam, andMiguel Castro. 2015. No Compro-

mises: Distributed Transactions with Consistency, Availability, and Performance.

In Proceedings of the 25th symposium on operating systems principles. 54–70.
[17] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. 2015. An Updated

Performance Comparison of Virtual Machines and Linux Containers. In 2015
IEEE international symposium on performance analysis of systems and software
(ISPASS). IEEE, 171–172.

[18] Funa. 2022. Funa Serverless. https://fauna.com/serverless.

[19] Galera. 2013. Galera Cluster. https://galeracluster.com/. "[accessed-April-2022]".

[20] GaleraCluster. 2015. Achieving Read-After-Write Semantics With Galera.

https://galeracluster.com/2015/06/achieving-read-after-write-semantics-with-

galera/. "[accessed-April-2022]".

[21] HAProxy. 2001. The Reliable, High Performance TCP/HTTP Load Balancer.

http://www.haproxy.org/. "[accessed-April-2022]".

[22] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu

Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: A Raft-based HTAP

Database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.
[23] Tianyang Jiang, Guangyan Zhang, Zhiyue Li, and Weimin Zheng. 2022. Au-

rogon: Taming Aborts in All Phases for Distributed In-Memory Transactions.

In 20th USENIX Conference on File and Storage Technologies (FAST 21). USENIX
Association.

[24] Jeffrey W. Josten, C Mohan, Inderpal Narang, and James Z. Teng. 1997. DB2’s

Use of the Coupling Facility for Data Sharing. IBM Systems Journal 36, 2 (1997),
327–351.

[25] Alexey Kopytov. 2004. Sysbench: A System Performance Benchmark.

http://sysbench. sourceforge. net/ (2004).
[26] Cockroach Labs. 2022. CockroachDB Serverless. https://www.cockroachlabs.

com/lp/serverless/.

[27] Tirthankar Lahiri, Vinay Srihari, Wilson Chan, Neil Macnaughton, and

Sashikanth Chandrasekaran. 2001. Cache Fusion: Extending Shared-disk Clusters

with Shared Caches. In VLDB, Vol. 1. 683–686.
[28] Rodrigo Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian Liu, and

Marcos Kalinowski. 2021. Data Management in Microservices: State of the

Practice, Challenges, and Research Directions. arXiv preprint arXiv:2103.00170
(2021).

[29] Leslie Lamport. 2019. The Part-time Parliament. In Concurrency: the Works of
Leslie Lamport. 277–317.

[30] Willis Lang, Frank Bertsch, David J DeWitt, and Nigel Ellis. 2015. Microsoft

Azure SQL Database Telemetry. In Proceedings of the Sixth ACM Symposium on
Cloud Computing. 189–194.

[31] Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Matsushita, and John Ouster-

hout. 2015. Implementing Linearizability at Large Scale and Low Latency. In

Proceedings of the 25th Symposium on Operating Systems Principles. 71–86.
[32] Feifei Li. 2019. Cloud-native Database Systems at Alibaba: Opportunities and

Challenges. Proceedings of the VLDB Endowment 12, 12 (2019), 2263–2272.
[33] Xinxin Liu, Yu Hua, and Rong Bai. 2021. Consistent RDMA-Friendly Hashing

on Remote Persistent Memory. In 2021 IEEE 39th International Conference on
Computer Design (ICCD). IEEE, 174–177.

[34] Microsoft. 2022. Azure SQL Database Serverless. https://learn.microsoft.com/en-

us/azure/azure-sql/database/serverless-tier-overview?view=azuresql.

[35] Microsoft. 2022. Use Read-only Replicas to Offload Read-only Query Work-

loads. https://docs.microsoft.com/en-us/azure/azure-sql/database/read-scale-

out?view=azuresql. "[accessed-April-2022]".

[36] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. 2014. Extracting

More Concurrency from Distributed Transactions. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14). 479–494.

[37] MySQL. 2016. MySQL Group Replication. https://dev.mysql.com/doc/refman/5.

7/en/group-replication.html. "[accessed-April-2022]".

[38] Simo Neuvonen, Antoni Wolski, Markku Manner, and Vilho Raatikk. 2011. Tele-

com Application Transaction Processing Benchmark. http://tatpbenchmark.

sourceforge.net/.

[39] Jethava Nikhil and Clugage Kevin. 2021. Databricks Serverless SQL. https://www.

databricks.com/blog/2021/08/30/announcing-databricks-serverless-sql.html.

[40] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable

Consensus Algorithm. In 2014 USENIX Annual Technical Conference (Usenix ATC
14). 305–319.

[41] Oracle. 2017. Read-Your-Writes Consistency. https://docs.oracle.com/cd/E17076_

05/html/gsg_db_rep/C/rywc.html. "[accessed-April-2022]".

[42] Percona. 2018. Percona XtraDB Cluster. https://www.percona.com/software/

mysql-database/percona-xtradb-cluster. "[accessed-April-2022]".

[43] Fabio Picconi, Pierre Sens, et al. 2005. Pastis: A highly-scalable multi-user

peer-to-peer file system. In European Conference on Parallel Processing. Springer,
1173–1182.

[44] Olga Poppe, Qun Guo, Willis Lang, Pankaj Arora, Morgan Oslake, Shize Xu, and

Ajay Kalhan. 2022. Moneyball: Proactive Auto-scaling in Microsoft Azure SQL

Database Serverless. Proceedings of the VLDB Endowment 15, 6 (2022), 1279–1287.
[45] ProxySQL. 2013. A High Performance Open Source MySQL Proxy. https://

proxysql.com. "[accessed-April-2022]".

[46] ProxySQL. 2018. GTID Consistent Reads. https://proxysql.com/blog/proxysql-

gtid-causal-reads/. "[accessed-April-2022]".

[47] Reza Sherkat, Colin Florendo, Mihnea Andrei, Rolando Blanco, Adrian Dra-

gusanu, Amit Pathak, Pushkar Khadilkar, Neeraj Kulkarni, Christian Lemke,

Sebastian Seifert, et al. 2019. Native Store Extension for SAP HANA. Proceedings
of the VLDB Endowment 12, 12 (2019), 2047–2058.

[48] Xiao Shi, Scott Pruett, Kevin Doherty, Jinyu Han, Dmitri Petrov, Jim Carrig,

John Hugg, and Nathan Bronson. 2020. FlightTracker: Consistency across Read-

Optimized Online Stores at Facebook. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). 407–423.

[49] Swaminathan Sivasubramanian. 2012. Amazon DynamoDB: A Seamlessly Scal-

able Non-relational Database Service. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data. 729–730.

[50] Douglas B Terry, Alan J Demers, Karin Petersen, Mike J Spreitzer, Marvin M

Theimer, and Brent B Welch. 1994. Session guarantees for weakly consistent

replicated data. In Proceedings of 3rd International Conference on Parallel and
Distributed Information Systems. IEEE, 140–149.

[51] The Transaction Processing Council. 2007. TPC-E Benchmark. http://tpc.org/

tpce/. "[accessed-April-2022]".

[52] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip

Shao, and Daniel J Abadi. 2012. Calvin: Fast Distributed Transactions for Parti-

tioned Database Systems. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. 1–12.

[53] Marco Tusa. 2021. Full Read Consistency Within Percona Operator for MySQL

Based on Percona XtraDB Cluster. https://www.percona.com/blog/2021/01/

11/full-read-consistency-within-percona-kubernetes-operator-for-percona-

xtradb-cluster/. "[accessed-April-2022]".

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/rds/aurora/serverless/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Replication.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Replication.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables_HowItWorks.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables_HowItWorks.html
https://www.tpc.org/tpcc/
https://fauna.com/serverless
https://galeracluster.com/
https://galeracluster.com/2015/06/achieving-read-after-write-semantics-with-galera/
https://galeracluster.com/2015/06/achieving-read-after-write-semantics-with-galera/
http://www.haproxy.org/
https://www.cockroachlabs.com/lp/serverless/
https://www.cockroachlabs.com/lp/serverless/
https://learn.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview?view=azuresql
https://docs.microsoft.com/en-us/azure/azure-sql/database/read-scale-out?view=azuresql
https://docs.microsoft.com/en-us/azure/azure-sql/database/read-scale-out?view=azuresql
https://dev.mysql.com/doc/refman/5.7/en/group-replication.html
https://dev.mysql.com/doc/refman/5.7/en/group-replication.html
http://tatpbenchmark.sourceforge.net/
http://tatpbenchmark.sourceforge.net/
https://www.databricks.com/blog/2021/08/30/announcing-databricks-serverless-sql.html
https://www.databricks.com/blog/2021/08/30/announcing-databricks-serverless-sql.html
https://docs.oracle.com/cd/E17076_05/html/gsg_db_rep/C/rywc.html
https://docs.oracle.com/cd/E17076_05/html/gsg_db_rep/C/rywc.html
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://proxysql.com
https://proxysql.com
https://proxysql.com/blog/proxysql-gtid-causal-reads/
https://proxysql.com/blog/proxysql-gtid-causal-reads/
http://tpc.org/tpce/
http://tpc.org/tpce/
https://www.percona.com/blog/2021/01/11/full-read-consistency-within-percona-kubernetes-operator-for-percona-xtradb-cluster/
https://www.percona.com/blog/2021/01/11/full-read-consistency-within-percona-kubernetes-operator-for-percona-xtradb-cluster/
https://www.percona.com/blog/2021/01/11/full-read-consistency-within-percona-kubernetes-operator-for-percona-xtradb-cluster/

[54] Nathan VanBenschoten, Arul Ajmani, Marcus Gartner, Andrei Matei, Aayush

Shah, Irfan Sharif, Alexander Shraer, Adam Storm, Rebecca Taft, Oliver Tan,

et al. 2022. Enabling the Next Generation of Multi-Region Applications with

CockroachDB. In Proceedings of the 2022 International Conference on Management
of Data. 2312–2325.

[55] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,

Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz

Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considerations

for High Throughput Cloud-native Relational Databases. In Proceedings of the
2017 ACM International Conference on Management of Data. 1041–1052.

[56] Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. 2017. Query Fresh: Log

Shipping on Steroids. Proceedings of the VLDB Endowment 11, 4 (2017), 406–419.
[57] Xingda Wei, Rong Chen, Haibo Chen, Zhaoguo Wang, Zhenhan Gong, and

Binyu Zang. 2021. Unifying Timestamp with Transaction Ordering for MVCC

with Decentralized Scalar Timestamp. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21). 357–372.

[58] Wikipedia. 2015. ConsistencyModel. https://en.wikipedia.org/wiki/Consistency_

model.

[59] Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang, Navid Yaghmazadeh,

Lorenzo Alvisi, and Prince Mahajan. 2014. Salt: Combining ACID and BASE in a

Distributed Database. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14). 495–509.

[60] Xiangyao Yu, Yu Xia, Andrew Pavlo, Daniel Sanchez, Larry Rudolph, and Srinivas

Devadas. 2018. Sundial: Harmonizing Concurrency Control and Caching in a

Distributed OLTP Database Management System. Proceedings of the VLDB
Endowment 11, 10 (2018), 1289–1302.

[61] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres, Arvind Krishnamurthy,

and Dan RK Ports. 2018. Building Consistent Transactions with Inconsistent

Replication. ACM Transactions on Computer Systems (TOCS) 35, 4 (2018), 1–37.
[62] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K Aguilera, and

Jinyang Li. 2013. Transaction Chains: Achieving Serializability with Low Latency

in Geo-distributed Storage Systems. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. 276–291.

[63] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,

Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and

Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. ACM
SIGCOMM Computer Communication Review 45, 4 (2015), 523–536.

[64] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang, and Yu Hua. 2021. One-

sided RDMA-Conscious Extendible Hashing for Disaggregated Memory. In

USENIX Annual Technical Conference. 15–29.

https://en.wikipedia.org/wiki/Consistency_model
https://en.wikipedia.org/wiki/Consistency_model

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Cloud-native relational databases
	2.2 Limitations on RO nodes
	2.3 Opportunities with RDMA
	2.4 Stale reads on other database systems

	3 PolarDB-SCC Overview
	4 The Design of PolarDB-SCC
	4.1 Linear Lamport timestamp
	4.2 Hierarchical modification tracker
	4.3 RDMA-based log shipment
	4.4 Read-your-writes consistency
	4.5 High availability and recovery
	4.6 Compatibility

	5 Evaluation
	5.1 Experimental setup
	5.2 Overall performance
	5.3 Breakdown analysis
	5.4 High scalability
	5.5 Support on serverless
	5.6 Use-case study on the cloud

	6 Related Works
	7 Conclusion
	References

