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ABSTRACT
Primary-secondary databases often have limited write throughput

as they rely on a single primary node. To improve this, some sys-

tems use a shared-nothing architecture for scalable multi-primary

clusters. However, these face performance issues due to distributed

transaction overheads. Recently, shared-storage-basedmulti-primary

cloud-native databases have emerged to avoid these issues, but they

still struggle with performance in high-conflict scenarios, often due

to expensive conflict resolution and inefficient data fusion.

This paper proposes PolarDB-MP, an innovative multi-primary

cloud-native database that leverages both disaggregated shared

memory and storage. In PolarDB-MP, each node has equal access

to all data, enabling transactions to be processed on individual

nodes without the need for distributed transactions. At the core of

PolarDB-MP is the Polar Multi-Primary Fusion Server (PMFS), built

on disaggregated shared memory. PMFS plays a critical role in facil-

itating global transaction coordination and enhancing buffer fusion,

seamlessly integrated with RDMA for minimal latency. Its three

main functionalities include Transaction Fusion for transaction

ordering and visibility, Buffer Fusion providing a distributed shared

buffer, and Lock Fusion for cross-node concurrency control. More-

over, PolarDB-MP introduces an LLSN design, establishing a partial

order for write-ahead logs generated across different nodes, accom-

panied by a tailored recovery policy. Our evaluations of PolarDB-

MP demonstrate its superior performance when compared to the

state-of-the-art solutions. Notably, PolarDB-MP is already in pro-

duction and undergoing commercial trials at Alibaba Cloud. To
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our knowledge, PolarDB-MP is the first multi-primary cloud-native

database that utilizes disaggregated shared memory and shared

storage for transaction coordination and buffer fusion.
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1 INTRODUCTION
Many cloud-native databases (such as AWS Aurora [49], Azure

Hyperscale [14, 26], Azure Socrates [1] and Alibaba PolarDB [27])

have adopted a primary-secondary architecture based on a disag-

gregated shared storage architecture, typically consisting of one

primary node and one or more secondary nodes. However, this

primary-secondary model faces a significant bottleneck in write-

heavy workloads due to the usage of a single primary node. Addi-

tionally, in scenarios where the primary node fails or shuts down

for upgrade, one of the secondary nodes will be promoted to the

primary role. This transition, while necessary, leads to a brief period

of downtime during the failover process. Consequently, there is

a growing demand for multi-primary cloud-native databases that

can provide enhanced scalability for write-intensive operations

(especially for highly concurrent workloads) as well as improved

high availability with seamless failover capability.

The two most popular multi-primary architectures are shared-

nothing and shared-storage. In the shared-nothing architecture

(e.g., Spanner[11], DynamoDB [15], CockroachDB [15], PolarDB-

X [6], Aurora Limitless [2], TiDB [19] and OceanBase [55], etc),

https://doi.org/10.1145/3626246.3653377
https://doi.org/10.1145/3626246.3653377
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the whole database is partitioned. Each node is independent and

accesses data exclusively within its designated partition. When a

transaction spans multiple partitions, it must require cross-partition

distributed transaction mechanisms, such as the two-phase commit

policy, which typically induces significant extra overhead [57, 61].

The shared-storage architecture is essentially the opposite, where

all data is accessible from all cluster nodes, such as IBMpureScale [20],

Oracle RAC [9], AWS Aurora Multi-Master (Aurora-MM) [3] and

Huawei Taurus-MM [16]. IBM pureScale and Oracle RAC are the

two traditional database products based on shared-storage archi-

tecture. They rely on expensive distributed lock management and

high network overhead. They are usually deployed in their dedi-

cated machines and are too rigid for a dynamic cloud environment.

Consequently, they usually have a much higher total cost of owner-

ship (TCO) than modern cloud-native databases. Aurora-MM and

Taurus-MM are the recently proposed products for a multi-primary

cloud-native database. Aurora-MM utilizes optimistic concurrent

control for write conflict, thus inducing a substantial abortion rate

when conflicts occur. In some scenarios, its four-node cluster’s

throughput is even lower than that of a single node [16]. On the

contrary, Taurus-MM adopts the pessimistic concurrent control

but it relies on page stores and log replays for cache coherence.

As such, it suffers from the high overhead of concurrent control

and data synchronization. The eight-node cluster only improves

the throughput by 1.8× compared to the single-node version in the

read-write workload with 50% shared data.

To address these challenges, this paper proposes PolarDB-MP,

a multi-primary cloud-native database via disaggregated shared

memory (and with a shared storage). PolarDB-MP inherits the disag-

gregated shared storage model from PolarDB, allowing all primary

nodes equal access to the storage. This enables a transaction to

be processed in a node without resorting to a distributed transac-

tion. In contrast to optimistic concurrency control, PolarDB-MP em-

ploys pessimistic concurrency control to mitigate transaction aborts

caused by write conflicts. Different from other cloud databases that

rely on log replay and page servers for data coherence between

nodes, PolarDB-MP uses disaggregated shared memory for effi-

cient cache and data coherence. With the growing availability of

RDMA networks in cloud vendors’ data centers [54], PolarDB-MP

is intricately co-designed with RDMA to enhance its performance.

The core component of PolarDB-MP is Polar Multi-Primary Fu-
sion Server (PMFS), which is built on disaggregated shared memory.

PMFS comprises Transaction Fusion, Buffer Fusion and Lock Fusion.
Transaction Fusion facilitates transaction visibility and ordering

across multiple nodes. It utilizes a Timestamp Oracle (TSO) for

ordering and allocates shared memory on each node to store lo-

cal transaction data that are accessible remotely by other nodes.

This decentralized transaction management approach via shared

memory ensures low latency and high performance in global trans-

action processing. Buffer Fusion implements a distributed buffer

pool (DBP), also based on disaggregated shared memory and acces-

sible by all nodes. Nodes can both pushmodified data to and retrieve

data from the DBP remotely. This setup allows swift propagation

of changes from one node to others, ensuring cache coherency

and rapid data access. Lock Fusion efficiently manages both page-

level and row-level locking schemes, thus enabling concurrent data

page access across different nodes while ensuring physical data

consistency and maintaining transactional consistency.

PolarDB-MP also adeptly manages write-ahead logs across mul-

tiple nodes, using a logical log sequence number (LLSN) to establish

a partial order for logs from different nodes. LLSN ensures that all

logs associated with a page are maintained in the same order as they

were generated, thereby preserving data consistency and simplify-

ing recovery processes. On the other hand, PolarDB-MP designs

a new recovery policy based on the LLSN framework, effectively

managing crash recovery scenarios.

Additionally, PolarDB-MP’smessage passing and RPC operations

are enhanced by a highly optimized RDMA library, boosting overall

efficiency. These advanced designs position PolarDB-MP as a robust,

efficient solution for multi-primary cloud-native databases.

We summarize our main contributions as follows:

• We propose a multi-primary cloud-native relational database via

disaggregated shared memory over shared storage (the first of

its kind), delivering high performance and scalability.

• We leverage the RDMA-based disaggregated shared memory to

design and implement Polar Multi-Primary Fusion Server (PMFS)

that achieves global buffer pool management, global page/row

locking protocol, and global transaction coordination.

• We propose an LLSN design to offer a partial order for write-

ahead logs generated across different nodes, accompanied by a

tailored recovery policy.

• We thoroughly evaluate PolarDB-MP with different workloads

and compare it with different systems. It shows high performance,

scalability, and availability.

This paper is structured as follows. First, we present the back-

ground andmotivation in Section 2. Then we provide PolarDB-MP’s

overview and detailed design in Section 3 and Section 4. Next, we

evaluate PolarDB-MP in Section 5 and review the related works in

Section 6. Finally, we conclude the paper in Section 7.

2 BACKGROUND AND MOTIVATION
2.1 Single-primary cloud-native database
Nowadays, there are many cloud-native databases based on the

primary-secondary architecture, such as Aurora [49], Hyperscale [14,

26], Socrates [1] and PolarDB [27]. Figure 1 depicts the typical ar-

chitecture of a primary-secondary cloud-native database. It usually

comprises a primary node for processing both read and write re-

quests and one or more secondary nodes dedicated to handling

read requests. Each node is a complete database instance, equipped

with standard components. However, a distinctive feature of these

databases, as opposed to traditional monolithic databases, is the

usage of disaggregated shared storage. This shared storage ensures

fault tolerance and consistency, and uniquely, adding more sec-

ondary nodes does not necessitate additional storage. This contrasts

with conventional primary/secondary database clusters, where each

node maintains its own storage.

While the primary-secondary-based databases offer certain ben-

efits, they face significant challenges under write-heavy workloads.

Scaling out to improve performance is not an option in such ar-

chitecture, and scaling up is limited by the available resources on

the physical machine. Cloud providers typically maximize the use

of physical resources, but since these resources are shared across
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Figure 1: The architecture of a typical primary-secondary-
based cloud-native database.

many instances, there’s often little room for scaling up a specific in-

stance on the same machine (e.g., adding CPU/memory resources).

Furthermore, migrating to a less crowded machine can result in

significant downtime and still faces the limitations of a single ma-

chine’s capacity. Another critical challenge in a single-primary

cluster is the issue of failover. If the primary node crashes, it takes

time for a secondary node to assume its role, leading to brief down-

time. Therefore, to achieve high scalability and availability, the

multi-primary database is increasingly becoming a necessity.

2.2 Shared-nothing architecture
The shared-nothing architecture [43] is a prevalent model for scal-

ing out, enjoying widespread use in both distributed computing [52,

56] and distributed databases [6, 19, 25, 45]. In this architecture,

each request is processed independently by a single node (proces-

sor/memory/storage unit) within a cluster. The primary aim is to

eliminate contention between nodes, as well as to remove single

points of failure, thus allowing the system to continue function-

ing despite individual node failures. This also permits upgrades of

individual nodes without necessitating a system-wide shutdown.

In databases based on shared-nothing architecture, it typically

partitions data across several nodes, with each node having ex-

clusive access (both read and write) to the data in its partition.

This architecture offers robust scalability when application traf-

fic is effectively partitioned. However, if a transaction spans more

than one partition, it requires distributed transaction processing

to maintain the transaction’s ACID properties. Managing efficient

synchronization among nodes to ensure these properties while

maintaining performance is challenging [57, 61], which hinders

scalability [13, 21, 40, 44, 47]. Various techniques, like locality-aware

partitioning [13, 35, 38, 58], speculative execution [36], consistency

levels [23] and the relaxation of durability guarantees [24], have

been proposed to mitigate this issue. However, these solutions often

lack transparency and require users to understand their intricacies

and carefully design their databases. Additionally, when the system

needs to scale in or out, data may need to be repartitioned, a pro-

cess often fraught with heavy, time-consuming data movements [6].

Overall, while shared-nothing architecture offers significant ben-

efits for scalability, these advantages come with their own set of

challenges and complexities.

2.3 Shared-storage architecture
The shared-storage architecture represents a stark contrast to the

shared-nothing model, as it allows each node within the cluster to

read and write any record in the entire database. In such a setup, to

facilitate concurrent transaction execution across different nodes,

global coordination of transaction execution is necessary. This

typically involves mechanisms like a global lock manager and a

centralized Timestamp Oracle (TSO). Conventional shared-storage-

based databases such as IBM pureScale [20] and Oracle RAC [9]

embody this architecture. However, detailed descriptions of their

implementation are sparse. These systems often struggle with the

complexities and costs associatedwith distributed lockmanagement

and high network overhead. Additionally, they were designed prior

to the advent of cloud computing and are typically deployed on

their own dedicated hardware, making them unsuited for modern

cloud environments. Their rigidity in this context often results in a

significantly higher Total Cost of Ownership (TCO) compared to

modern cloud-native databases.

Aurora-MM [3] and Taurus-MM [16] are the two recent propos-

als to bring the multi-primary database to the cloud. Aurora-MM

adopts the shared storage architecture and employs optimistic con-

currency control to manage write conflicts. This approach can lead

to high performance when there is no contention between nodes.

However, a significant downside is that, in scenarios with conflicts,

such as when different nodes attempt to modify the same data page

simultaneously, it results in a high rate of transaction aborts. In

such cases, it reports such write conflicts to the application as a

deadlock error, requiring applications to detect these errors, roll

back transactions, and retry them later. This not only diminishes

throughput and consumes additional resources, but also presents

a challenge as many applications are not adept at handling high

abort rates. According to Taurus-MM ’s research [16], Aurora-MM’s

four-node cluster only shows a throughput improvement of less

than 50% compared to a single node under the SysBench read-write

workload with a mere 10% data sharing between nodes (the detailed

configuration is presented in Section 5). Moreover, in a SysBench

write-only workload with 10% shared data, the four-node cluster’s

throughput is even lower than that of a single node.

To improve performance, Taurus-MM utilizes the pessimistic

concurrency control. It introduces a Vector-scalar clocks algorithm

for transaction ordering and a hybrid page-row locking mechanism

to enable concurrent transaction executions and data access on dif-

ferent nodes. However, this approach encounters issues with buffer

coherency. When a node requests a page that has been modified

by another node, it must request both the page and corresponding

logs from the page/log stores, and then apply the logs to obtain the

latest version of the page. This process typically involves storage

I/Os, which can impact performance, and the log application also

consumes extra CPU cycles. In their evaluations [16], the through-

put of Taurus-MM ’s eight-node cluster is approximately 1.8× that

of a single node under the SysBench write-only workload with 30%

shared data, illustrating the trade-offs and challenges in optimizing

multi-primary cloud databases.

2.4 MVCC and transaction isolation
Multi-version concurrency control (MVCC) is currently the most

popular transaction management scheme in modern database [10,

32, 53] and it is used in almost every major relational database.

MVCC differs from traditional methods by not overwriting data

with updates; instead, it creates new versions of the data item. This
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results inmultiple versions of each data item being stored simultane-

ously. The visibility of these versions to a transaction is determined

by the database’s isolation level, with snapshot isolation being a

common choice. Under snapshot isolation, each transaction sees a

snapshot of the database as it was at the start of the transaction, en-

suring consistent data view throughout its duration. Transactions

use timestamps or transaction IDs to identify the correct versions

of data to read, providing a mechanism that effectively isolates read

and write operations from each other. This isolation is achieved

without relying on locks, thereby reducing potential bottlenecks

and improving performance, especially in environments with high

levels of concurrency.

However, in a shared-storage multi-primary database, determin-

ing the visibility of a data item under MVCC poses a significant

challenge. When a transaction reads a version of a data item on one

node, it cannot locally determine the data’s visibility, as the item

may have been concurrently updated by a transaction on another

node. To accurately determine if the current version is visible to a

transaction’s read view under the given isolation level, a node must

have access to global transaction information. Synchronizing this

global transaction information across different nodes typically in-

volves considerable overhead. This complexity is a critical issue that

hasn’t been thoroughly addressed in existing systems like Aurora-

MM or Taurus-MM. In PolarDB-MP, we tackle this challenge with

an innovative design, Transaction Fusion with PMFS. Our approach

decentralizes the whole transactions’ information on each node.

Each node only maintains its own local transactions’ information

and can be accessible by other nodes via RDMA. This enables a

transaction to accurately and efficiently determine a data item’s

visibility under MVCC, supporting various isolation levels.

2.5 Opportunities with RDMA
A multi-primary database cluster inevitably needs message passing

for data synchronization and concurrency control over different

nodes, making the network a significant concern in improving

performance. Fortunately, with advancements in network technol-

ogy, such as the ultra-low latency and 400Gb/s throughput offered

by devices like the ConnectX-7 InfiniBand adapter [34], and the

widespread availability of RDMA (Remote Direct Memory Access)

in commodity clusters [17, 62], network bottlenecks are increas-

ingly becoming less significant. At Alibaba, the RDMA network

is a core infrastructure component, and PolarDB is co-designed

with RDMA [54]. In the Alibaba public cloud, PolarDB clusters are

all outfitted with RDMA networks. The existence of these RDMA

networks provides a unique opportunity for PolarDB to develop its

multi-primary variant, PolarDB-MP, with much less network hard-

ware costs. PolarDB-MP leverages the RDMA-based disaggregated

shared memory to directly transmit data pages between different

nodes. Additionally, both the lock manager and transaction coordi-

nation messages are transmitted via the RDMA network.

3 POLARDB-MP OVERVIEW
Figure 2 offers a comprehensive overview of PolarDB-MP’s archi-

tecture. PolarDB-MP adopts a disaggregated shared storage, using

PolarStore and PolarFS [7], but it also maintains compatibility with

any other disaggregated shared storage solutions. To effectively

primary

SQL engine

Transaction manager

Buffer pool

Lock manager …

Distributed shared storage

PMFS 
Buffer fusion Transaction fusionLock fusion

pRDMALib

pRDMALib

SQL engine

Transaction manager

Buffer pool

Lock manager

pRDMALib primary
RDMA

Disaggregated shared memory

Figure 2: The architecture of PolarDB-MP.
support multiple primary nodes on the shared storage, we introduce

the Polar Multi-Primary Fusion Server (PMFS) based on the disag-

gregated memory architecture (on top of the disaggregated shared

storage). It enables all nodes to have equal access to the shared data

in memory and concurrently process read/write requests. The key

function of PMFS is to manage the global transaction concurrency

and buffer coherency across different nodes.

PMFS is implemented with a disaggregated shared memory, typ-

ically consisting of multiple nodes and providing high availability.

PMFS comprises three core components: Transaction Fusion, Buffer

Fusion and Lock Fusion. Transaction Fusion aims to manage global

transaction processing, guaranteeing the transaction’s ACID. It

maintains a global Timestamp Oracle (TSO) to order transaction

committing. Moreover, Transaction Fusion supports global trans-

action visibility to achieve snapshot isolation under multi-version

concurrency control (MVCC).

Buffer Fusion, equipped with a distributed buffer pool (DBP),

plays a crucial role in maintaining buffer coherency across all nodes.

The DBP buffers a number of data pages for fast access. When a

node makes updates to a data page, it pushes this updated page to

the DBP at an opportune moment. Subsequently, if another node

requires this page, it can retrieve the most recent version directly

from the DBP. The connection between the primary nodes and

the DBP is facilitated by a high-speed RDMA network, ensuring

rapid movement of data pages across different nodes. The DBP

leverages disaggregated shared memory to store these data pages.

Since each node has a local buffer, Buffer Fusion is also tasked with

implementing buffer coherency for all nodes.

Lock Fusion is responsible for implementing two locking pro-

tocols: page-locking (PLock) and row-locking (RLock). The PLock

protocol ensures the physical consistency of a page during concur-

rent access by different nodes. A node can write or read a page only

if it holds the corresponding exclusive/shared PLock. Meanwhile,

the RLock protocol guarantees the transactional consistency of user

data, and typically obeys the two-phase locking protocol. To reduce

the messaging overhead caused by RLock requests and avoid the

centralized metadata of the locking state, PolarDB-MP embeds row

lock information within the row data itself, maintaining only the

wait-for relation in Lock Fusion.

Additionally, PolarDB-MP proposes the logical log sequential

number (LLSN) to order the redo logs (write-ahead log) across



PolarDB-MP: A Multi-Primary Cloud-Native Database via Disaggregated Shared Memory SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

different nodes. LLSN provides a partition order for all redo logs

generated by different nodes, which guarantees each page’s redo

log is maintained in the order they are generated. This scheme

ensures the correctness of the recovery after a system crash.

In PolarDB-MP, all communications between the primary nodes

and PMFS leverage one-sided RDMA or RDMA-based RPC. This

approach ensures efficient and low-latencymessage passing. Similar

to PolarDB, PolarDB-MP also incorporates a standby node to ensure

high availability across regions. Changes occurring in the primary

cluster are synchronized to the standby cluster using the write-

ahead log, thereby maintaining the integrity and continuity of the

database even in the event of a regional failure.

Given the extensive existing literature on disaggregated shared

memory [4, 31, 42, 46] and our previous work integrating it into a

relational database (PolarDB) [8, 41, 60], we do not delve into its

detailed implementation in this paper, as it is not the primary focus

of our contribution.

4 DESIGN AND IMPLEMENTATION
4.1 Transaction Fusion
In a multi-primary database like PolarDB-MP, transaction ordering

and visibility are critical for maintaining isolation and consistency.

To achieve high performance and maintain simplicity, PolarDB-MP

employs a Timestamp Oracle (TSO) for transaction ordering. The

TSO is an integral part of the Transaction Fusion on the PMFS.

As a transaction reaches its commit phase, it requests a commit

timestamp (CTS) from TSO. This CTS is a logical, incrementally

assigned timestamp, ensuring that orderly transaction processing is

maintained. The CTS is usually fetched by using a one-sided RDMA

operation, which is typically completed within several microsec-

onds and has been found to not be a bottleneck in our tests.

To efficiently manage all transaction information in the cluster,

PolarDB-MP employs a decentralized method to distribute this in-

formation across all nodes. Each node in PolarDB-MP reserves a

small portion of memory to store its local transaction information. A

node can remotely access the other node’s transaction information

via one-sided RDMA. Figure 3 illustrates this design. Every node

maintains the information for its local transactions in the Transac-
tion Information Table (TIT). TIT plays a crucial role in managing

transactions by maintaining four key fields for each transaction:

pointer, CTS, version and ref. The pointer is the transaction object

pointer, CTS marks the transaction’s commit timestamp, version
identifies different transactions in the same slot, and ref is a flag

indicating if any transactions are waiting for this one to release its

locks, which will be introduced in Section 4.3.2.

When a transaction starts on a node, a locally incremental and

unique ID will be allocated to this transaction. A free TIT slot

(identified by a null transaction pointer) is then allocated to this

transaction, storing its pointer and setting other fields appropri-

ately. As TIT slots can be reused, the version field differentiates

transactions occupying the same slot at different times, increment-

ing with each new transaction. Initially, a transaction’s ref is set to

zero and CTS is set as CSN_INIT. To globally identify a transaction,

PolarDB-MP combines the node_id, trx_id, slot_id, and version into

a global transaction ID ( g_trx_id). With this g_trx_id, any node can

remotely access a transaction’s CTS from the target node through

0 1 2 3 4 5 6 7 8
null null 0x2c0 0x6c1 0x8b0 0x9f1 null null null

0 0 5 10 CSN_INIT CSN_INIT 0 0 0
0 1 1 1 0 0 1 0 0

10 10 10 10 11 11 12 12 12

slot id

active trxcommitted trx

trx pointer

Primary node

!"#$%#&'()$ *+%()$

…
RDMA

TIT

CTS
Ref

Version

Trx info table (TIT) Trx info table (TIT)
Primary node

node id trx id slot id version

free slots free slots

next free slotglobal trx_id

Figure 3: The design of transaction information table (TIT).

RDMA. The whole transaction’s information is distributed on differ-

ent nodes. Each node only needs to maintain its local transactions’

metadata. The transaction ID and TIT slot can be allocated locally

without communicating with a coordinator, reducing overhead and

simplifying transaction management in the multi-primary system.

Additionally, PolarDB-MP adds two extra metadata fields for each

row to store the g_trx_id and CTS. These two fields can help to

determine the data’s visibility.

Transaction visibility. Like most modern databases, PolarDB-

MP also implements MVCC, which is a popular technique used to

maintain consistency while allowing concurrent transactions. In

PolarDB-MP, the process of updating a row involves storing the

current global transaction ID (g_trx_id) in the row’s metadata. This

g_trx_id is crucial for tracking the transaction that last modified

the row. When a transaction reaches the commit stage, it updates

the CTS in the metadata of the rows affected by that transaction,

provided these rows are still in the buffer. If a row is no longer in the

buffer at the time of committing the transaction, its CTS remains

at the default value (CSN_INIT ).
These two pieces of metadata, g_trx_id and the CTS, are instru-

mental in determining the visibility of a row to a given transaction.

Each transaction in PolarDB-MP is assigned a read view, which

consists of its own g_trx_id and the current CTS fetched from the

TSO. This read view plays a crucial role in the MVCC mechanism.

A row is visible to a transaction if the row is committed before the

transaction’s read view. When a transaction performs a read oper-

ation, it initially accesses the latest version of the row. However,

if this version is not visible to the transaction (based on its read

view), it utilizes undo logs to construct the previous versions of the

row. This process continues until it finds a version of the row that

is visible to the transaction.

However, in amulti-primary database, the challenge is how to get

a row’s CTS as the row may be updated by another node. PolarDB-

MP address this by using the TIT design, outlined in Algorithm 1.

If the row’s CTS field is filled with a valid value, not the initialized

value (𝐶𝑆𝑁_𝐼𝑁 𝐼𝑇 ), it can directly get the CTS from the row (line

2-5). But, in some cases where the row’s CTS is not filled (typically

because the row was evicted from the buffer upon transaction

commit), the TIT is used to acquire the CTS of this row. It needs first

to retrieve the transaction ID (g_trx_id) from the row’s metadata

fields. Then it can get the corresponding TIT slot with this g_trx_id.

If the g_trx_id belongs to the current node, the TIT slot can be

directly read from the local TIT (line 9). Otherwise, it needs a one-

sided remote RDMA read from the target node (line 11). It’s crucial
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to ensure that the g_trx_id version in the TIT matches the one

being checked (line 13). A mismatch indicates that the TIT slot has

been reused by a different transaction, implying that the original

transaction has already been committed. In this case, we can return

a minimal CTS value to indicate this row is visible to all transactions

(line 15). This is because a TIT slot is only freed and reused if its

CTS is smaller than the CTS of all active views. If the slot is valid,

we can get the CTS from the slot. In case the transaction is still

active, it returns a maximum CTS value to indicate that it is not

visible to any transaction except itself (line 16).

The design of the TIT is notably RDMA-friendly, allowing for

efficient remote access to TIT slots across nodes via a one-sided

RDMA interface. During system startup, each node synchronizes

the starting address of its TIT with other nodes. Each global trans-

action ID in the system includes a reference to a specific TIT slot,

indicating its position or offset within the TIT. When a node needs

to access information from a TIT slot located on another node, it

first calculates the remote address. This calculation is based on

the synchronized starting address of the TIT and the offset of the

specific TIT slot. Once the remote address is determined, the node

can directly access the required data from the TIT slot of the remote

node using one-sided RDMA.

TIT recycle. The TIT has a limited memory footprint. To manage

this efficiently, a background thread reclaims and frees up used TIT

slots for reuse. A transaction’s TIT slot is eligible for recycling when

its changes are visible to all other transactions. This implies that if a

slot is reused, the associated transaction’s changes are visible to any

transaction. To implement this, each node runs a background thread

that sends its minimal view to Transaction Fusion. Transaction

Fusion consolidates these views to form a global minimum view,

which is then broadcast to all nodes. The nodes recycle TIT slots if

their CTS is smaller than the global minimal view’s CTS.

Timestamp fetching. For read transactions, acquiring the current
CTS from the TSO is necessary. To reduce the overhead of frequent

CTS fetching, especially under the read committed isolation, we

utilize the Linear Lamport Timestamp approach from PolarDB-

SCC [54]. It allows a request to reuse a recently fetched timestamp if

it was obtained after the request’s arrival, significantly cutting down

on the number of timestamp fetching operations while maintaining

consistent isolation levels. The correctness and effectiveness of this

approach have already been proven in PolarDB-SCC [54].

4.2 Buffer fusion
Each PolarDB-MP node can update any data page, leading to fre-

quent transfers of pages between different nodes. To facilitate fast

cross-node data movement, PolarDB-MP proposes Buffer Fusion,

where nodes push their data pages to Buffer Fusion’s distributed

buffer pool (DBP) and subsequently another node can then access

a page modified by its peers from this DBP. In this case, the pages

can be efficiently moved between different nodes with low latency.

Additionally, the DBP utilizes disaggregated shared memory for its

buffer, allowing for a sizable and scalable buffer pool.

Figure 4 presents the Buffer Fusion design. Each node has its

own local buffer pool (LBP), a subset of Buffer Fusion’s DBP. Within

the LBP, we introduce two extra fields for each page’s metadata:

valid and r_addr. The valid field indicates whether the page has

Algorithm 1 Get the CTS of a row

1: function GetCTSForRow(row)

2: if row.CTS != CTS_INIT then
3: # the row’s CTS is filled with a valid value

4: return row.CTS
5: end if
6: # the row’s CTS is not filled and get it from TIT

7: g_trx_id = GetTrxID(row)

8: if g_trx_id.node_id == CURRENT_NODE_ID then
9: TIT_slot = GetTrxInfoLocally(g_trx_id)

10: else
11: TIT_slot = GetTrxInfoRemotely(g_trx_id)

12: end if
13: if TIT_slot.version != g_trx_id.version then
14: # slot is reused by other transaction

15: return CSN_MIN
16: end if
17: if TIT_slot.CTS == CTS_INIT then
18: # the transaction is still active

19: return CSN_MAX
20: end if
21: return TIT_slot.CTS

22: end function

ID data valid r_addr
100 xxxx 1 0x11b2
200 yyyy 1 0x22f3

Local buffer pool (LBP)

…
Local buffer pool (LBP)
ID data valid r_addr
100 xxxx 1 0x11b2
200 yyyy 0 0x22f3

ID data addr Active nodes Invalid addr
100 0x11b2 [1,2] [0x11,0x22]
200 0x22f3 [1,2] [0x33,0x44]

DBP metadataPMFS

Disaggregated shared memory

RDMA

RDMA

Figure 4: The design of buffer fusion.

been modified by other nodes, and r_addr points to the page’s

address in the DBP. When accessing a page from its LBP, a node

first checks the page’s validity. If it’s not valid, it retrieves the page

from DBP using its r_addr via the one-sided RDMA interface. In

the Buffer Fusion, it also maintains some metadata for each page

for the purposes of tracking the node IDs that have copies of the

page, the addresses of their invalid flags, and the page’s address

in the DBP. When a new version of a page is stored in the DBP,

Buffer Fusion remotely invalidates the copies on other nodes via

the address of the invalid flag. In the LBP, the dirty pages (pages

modified since being loaded into the LBP) are periodically flushed

to the DBP in the background, or on-demand when releasing the

corresponding PLock. PolarDB-MP adopts the "no force at commit"

policy, commonly used to enhance performance in many databases.

In PolarDB-MP, before flushing a dirty page to the DBP, PolarDB-

MP also forces the corresponding logs to storage. This ensures that

a page can be evicted from the LBP if it has been flushed to the DBP,

and it can be recovered from logs in the event of a DBP failure.

Page access. In PolarDB-MP, each node can directly access the

page if it is in the LBP and valid. If invalid, it retrieves the page

from the DBP via the one-sided RDMA interface. If the page is not
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Primary

111 [1:S, 2:S]

201 [1:X, 2:Pending]
… …

page id node_id : type

Lock fusion

111 S 3
201 X 1
… …

page id type

…

PMFS

RDMA

Primary

111 S 2
201 Pending 1
… …

page id typeref ref

Figure 5: The design of PLock.

in the LBP, an RPC call to Buffer Fusion checks its presence in the

DBP. If the page is in the DBP, it adds the primary node’s ID to the

page’s active nodes and returns the page’s address to the node for

remote reading from DBP. If the page is not in the LBP or DBP, it is

read from the shared storage. Once loaded by a node, the page is

registered to the DBP and remotely written to it. Concurrent page

access across different nodes and the consistency of the database’s

internal structures, like B-tree pages, are maintained using PLock,

which will be detailed in the subsequent section.

4.3 Lock fusion
Lock Fusion implements both the page-locking (PLock) and row-

locking (RLock) protocols. PLock is similar to the page latch in

single-node databases, ensuring atomic access to a page and the con-

sistency of internal structures. RLock, on the other hand, maintains

transactional consistency across nodes, following the two-phase

locking protocol, which is typically used in many databases.

4.3.1 PLock protocol. The PLock is designed to maintain physical

data consistency. It does not apply to concurrent page access within

a single node. The internal page concurrency control within a single

node is still the same as before. PLock is managed at the node level,

as depicted in Figure 5. Each node keeps track of the PLock it holds

or is waiting for, and a reference count indicates the number of

threads using a particular PLock. Lock Fusion maintains all PLock

information, tracking each lock’s status. In PolarDB-MP, before

performing any update/read to a page, the node must hold the

corresponding X/S PLock. When a node requires a PLock, it first

checks its local PLock manager to see if it already holds the required

or a higher lock level. If not, it requests the PLock from Lock Fusion

via RDMA-based RPC. Lock Fusion handles the request, checking

for conflicts before responding. If a conflict exists, the requesting

node is suspended and later awoken when its PLock request can

be granted. Furthermore, when a PLock is released by a node, this

change is communicated to Lock Fusion, which then updates the

lock’s status. Lock Fusion also notifies any nodes waiting for the

released PLock, enabling them to proceed with their operations.

Lazy releasing. Due to the temporal locality [5], a page will

be referenced again in the near future after it is accessed. Thus

PolarDB-MP implements a strategy to minimize the PLock-related

RPC overhead. Instead of releasing its PLock back to Lock Fusion

immediately after use, a node decreases the reference count for

the PLock. The lock becomes available for release once this count

drops to zero, but it is still temporarily retained by the node. If the

same node needs to acquire the PLock again, and the requested

lock type is not stronger than the currently held type, the PLock

can be granted locally. This method effectively reduces the RPC

overhead for pages that are frequently accessed on the same node.

In scenarios where a different node requests a conflicting lock type,

Lock Fusion intervenes by sending a negotiation message to the

node currently holding the lock. This message prompts the holding

node to release the lock once its reference count reaches zero.

A node can locally grant a PLock if it already holds an equal

or stronger type of the PLock. However, to prevent potential lock

starvation of other nodes, when a node receives a negotiation mes-

sage for a PLock, it cannot autonomously guarantee this PLock

for its internal transactions. Instead, it must communicate with

Lock Fusion, which manages the granting of locks to nodes in a

First-In, First-Out order. This approach ensures a fair and efficient

distribution of locks across different nodes, maintaining the balance

between local optimization and global resource allocation.

Physical consistency. PLock maintains the physical consistency

for both physical data and internal structures. To update or read

a page on any node, the node must first acquire the appropriate

exclusive or shared PLock for that page. This process ensures that

when a node updates a page locally, other nodes are excluded from

reading this page as they cannot obtain the shared PLock. If a node

is about to release an exclusive PLock and the corresponding page

has been modified, the node will push this updated page to the DBP.

Meanwhile, it will inform Buffer Fusion to invalidate the page on

other nodes. As a result, if another node requests this page after

holding the necessary PLock, it will discover that its local version

is now invalid and will subsequently retrieve the latest version of

the page from DBP. On the other hand, to guarantee the consis-

tency of internal structure, such as B-tree, PolarDB-MP adopts a

similar approach to that used in single-node databases. Changes

to the B-tree structure, such as page splits or merges, are executed

within internal mini-transactions. During these operations, the

corresponding pages’ PLocks are held until the mini-transaction

is committed. It ensures that no transaction, whether within the

same node or on other nodes, encounters an inconsistent B-tree

structure. This careful management of PLock thus plays a crucial

role in preserving the integrity and consistency of the database’s

structure and data across its multi-primary environment.

4.3.2 RLock protocol. Within a single-node database, row-level

locking is typically employed to ensure transaction consistency

and isolation. In PolarDB-MP, where multiple transactions may

run concurrently on different nodes and potentially update the

same data, a global row-locking (RLock) protocol is indispensable.

To reduce message traffic associated with row locking, PolarDB-

MP embeds row lock information directly within each row and

only maintains the wait-for relation on Lock Fusion. For each row,

an additional field indicates the locking transaction’s ID. When

a transaction attempts to lock a row, it simply writes its global

transaction ID (as introduced in Section 4.1) into this field. If the

row’s transaction ID field is already taken by an active transaction,

a conflict is detected, and the current transaction must wait. In

PolarDB-MP, when attempting to update a row, it must already

hold an X PLock lock on the page containing the row. So only one
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src_n_id src_trx_id des_n_id des_trx_id
1 10 2 30

… … … …

trx id ref
10 1
… …

Wait info table

Primary 

PMFS

Primary

transactions
1

23 4

id=30

Figure 6: The design of the RLock policy.

transaction has access to write a row’s locking information, and

then only one transaction can successfully lock this row. Similar to

the singe-node database, RLock protocol also obeys the two-phase

locking policy that locks are held until the transaction is committed.

In the RLock design, determining whether a row is locked by

another transaction involves checking the active status of a trans-

action. In a multi-primary database, ascertaining whether a given

global transaction ID represents an active transaction can be chal-

lenging. However, PolarDB-MP’s TIT design facilitates this process

efficiently. With a global transaction ID, which combines node_id,

local trx_id, slot_id, and version, one node can retrieve the trans-

action’s CTS from either the local TIT or remote TIT on another

node. If this CTS is populated with a valid value or if the corre-

sponding TIT slot has been reused, it indicates that the transaction

has been committed and is no longer active. Conversely, if the CTS

field remains at its default value, the transaction is still considered

active. To minimize excessive remote memory access, PolarDB-

MP synchronizes the global minimal active transaction ID across

nodes in the background. Thus, if a transaction’s global ID is less

than this global minimal active transaction ID, the transaction is

no longer active. This approach streamlines the process of lock

checking and enhances the efficiency of transaction management

in the multi-primary database.

The transaction ID in the row functions as a lock indicator. So this

protocol only supports exclusive (X) lock. The shared (S) lock on a

row is not supported in PolarDB-MP, but it’s acceptable. In PolarDB-

MP or many other databases (e.g., the MySQL-variants), most read

requests are snapshot reads, handled via multi-version concurrency

control (MVCC), thus not requiring locks. When reading a row, a

transaction fetches the latest version without needing a row lock,

though the page must be S-locked through PLock. The transaction

then verifies the visibility of the version based on its transaction ID.

If the version is not visible, the transaction reconstructs a visible

version using undo logs, while the S-lock on the page prevents other

threads from modifying the row during this process. So discarding

the S type of row-lock does not affect the processing of read requests.

In some rare cases, it requires to X lock a record. PolarDB-MP will

upgrade the S lock to the X lock. Generally, this design has little

impact on performance but saves a lot of message passing.

Locking processing. We demonstrate the RLock processing in

Figure 6. Consider a scenario where transaction T30 on node-2

attempts to exclusively lock (X-lock) a row. It finds that the row

is already X-locked by another transaction (T10) by examining

the row’s metadata. In response, T30 first remotely adjusts the

reference (‘ref’) field in the remote transaction’s (T10’s) metadata.

This action signals that there is a waiting transaction (T30) pending

the release of the lock by T10. Then T30 communicates with Lock

Fusion, sending information about its wait status. This information

is added to a wait info table in Lock Fusion. Once T10 completes

its transaction and commits, it checks its ‘ref’ field. Finding that

another transaction (T30) is waiting, T10 notifies Lock Fusion that

it has committed. Lock Fusion, upon receiving T10’s notification,

consults the wait info table, and then notifies T30, which can now

wake up and continue its process.

4.4 Logs ordering and recovery
Logging scheme. PolarDB-MP adopts an ARIES-style [30] logging

technique, utilizing redo (write-ahead) logs for data recovery and

undo logs for rolling back uncommitted changes. In PolarDB-MP,

each node maintains its own sets of redo log and undo log files. This

design enables different nodes to simultaneously synchronize these

logs to the storage without the need for explicit concurrency control

mechanisms. The persistency strategy for redo logs in PolarDB-

MP remains consistent with conventional solutions. Specifically,

before committing a transaction, the corresponding redo logs are

synchronized to the storage system. This ensures the durability of

committed changes. Within a node, each log entry in the redo log

is assigned a unique and incremental log sequence number (LSN)

at the time of generation. Importantly, this LSN also serves as the

offset within the redo log file. Consequently, the order of persistence

for redo logs reflects the order of their generation within a node.

LLSN. However, in PolarDB-MP, a notable challenge arises from

the fact that different nodes can independently update the same

page, leading to the generation of redo logs across these nodes. This

situation results in multiple nodes having different redo logs for the

same page. As each redo log records the change made to a specific

page, the key to recovery in this context is applying the redo logs

for the same page in the order they were generated, while logs from

different pages can be applied in any sequence. This understanding

leads to the realization that it’s unnecessary to maintain a total

order for all redo logs; instead, ordering needs to be ensured only

for logs corresponding to the same page.

Addressing this challenge, PolarDB-MP introduces the logical

log sequence number (LLSN), establishing a partial order for logs

from different nodes, specifically ensuring that logs related to the

same page are maintained in their generation order. However, LLSN

doesn’t impose any specific order on logs from different pages,

which is also unnecessary. To implement this, each node maintains

a node-local LLSN that automatically increments with every log

generation. When a node updates a page and generates a log, the

new LLSN is recorded in the page metadata and also assigned to

the corresponding log. If a node reads a page from storage or the

DBP, it updates its local LLSN to match the accessed page’s LLSN,

provided that the page’s LLSN exceeds the node’s current LLSN.

This ensures that the node’s LLSN remains synchronized with the

pages it accesses. Subsequently, when a node updates a page and

generates logs, its LLSN is incremented, guaranteeing that the new

LLSN is larger than that of any node that previously updated the

page. Thanks to the PLock design, only one transaction can update

a page at a time. Thus, when a page is sequentially updated on

different nodes, the LLSN effectively maintains the logs in their

generation order. Moreover, logs must be persisted in the order they

are generated. Within one node, this is guaranteed by persisting
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logs in LSN order. When a page is updated across two nodes, one

node pushes its updated page to the DBP before releasing the PLock,

allowing the next node to retrieve it from the DBP. PolarDB-MP

forces that a node persists all logs related to a page before pushing

the page to the DBP. This ensures that, when a node updates a

page, previous logs related to the page, generated by other nodes,

are already stored to the storage. Consequently, logs associated

with the same page are persistently ordered as they are generated,

maintaining data consistency across multiple nodes.

Recovery. During the recovery, it’s essential to apply redo logs

to restore modified data pages accurately. As previously outlined,

the correct database recovery relies on applying the redo logs in

the order of their LLSNs. While LLSNs within a single log file are

always incremental, they may overlap when considering different

log files on different nodes. The requirement during recovery is to

apply the logs that belong to the same page in their LLSN order.

The naive way is to load all the log files and sort the log entries with

their LLSNs, but this requires too much memory to hold all the log

data and wastes CPU cycles during the huge data sorting. To avoid

this, PolarDB-MP only reads a small part of logs each time, then

applies them. Each time, it only reads a chunk of data from each

file and determines a bounded LLSN (𝐿𝐿𝑆𝑁𝑏𝑜𝑢𝑛𝑑 ) in these chunks.

𝐿𝐿𝑆𝑁𝑏𝑜𝑢𝑛𝑑 can guarantee that all the remaining logs’ LLSNs in the

files are larger than 𝐿𝐿𝑆𝑁𝑏𝑜𝑢𝑛𝑑 . PolarDB-MP only picks the log

data whose LLSN are smaller than 𝐿𝐿𝑆𝑁𝑏𝑜𝑢𝑛𝑑 in these chunks and

parses them for the application. The other log data whose LLSN

are larger than 𝐿𝐿𝑆𝑁𝑏𝑜𝑢𝑛𝑑 will be left to the next batch.

Undo logs are also protected by its redo logs and they are re-

covered after applying all redo logs. In PolarDB-MP, distributed

transactions are unnecessary as transactions can be executed on a

single node. Consequently, we can perform rollbacks for uncom-

mitted transactions in the same manner as single-node databases,

directly applying the undo logs.

5 EVALUATION
5.1 Experimental setup
Test platform. PolarDB-MP is implemented with a commercial

cloud-native database (PolarDB) with disaggregated shared storage.

In our test, we use the PolarStore [7] as the storage layer. PolarDB-

MP is already in production and undergoing commercial trials at

Alibaba Cloud. Our evaluations are all conducted in our public

cloud environment. Each of the underlying physical machines is

equipped with 2 Intel Xeon Platinum 8369B @2.90GHz CPUs and

1TB DDR4 DRAM, running CentOS-7 OS. These physical machines

are connected by a 100Gbps Mellanox ConnectX-6 network.

System configurations. At Alibaba, the most popular type of

PolarDB instances is 8 vCPUs and 32GB memory (8c32g). We test

PolarDB-MP with the same configuration (8c32g) in most test cases.

We set the primary node’s local buffer pool size to 24GB (75% of

available memory space and this is a default setting in PolarDB).

We also test PolarDB-MP with the 32 vCPU instances and especially

deployed with 32 primary nodes, a total of more than one thousand

vCPUs in a cluster. Finally, we adopt the read committed isolation in

all systems during the evaluation. This is the default isolation level

for many databases, and it is widely used for many user applications.

Workloads. We evaluate PolarDB-MP with three standard OLTP

benchmarks (SysBench [22], TPC-C [12] and TATP [33]) and a real

production workload from Alibaba (with a profiled mix of 3:2:5

insert:update:select ratio). Unless otherwise stated, we adopt the

default configurations for all of these workloads.

Additionally, to evaluate the scalability and flexibility of PolarDB-

MP in handling varying degrees of data sharing across nodes, we

adapted SysBench following the configuration approach used in

Taurus-MM [16]. In our multi-node cluster setup, tables were logi-

cally divided into N + 1 groups, where N represents the number of

nodes. The first N groups of tables were designated as private, with

each node being assigned to a specific group and exclusively access-

ing the tables within it. The last group was shared, allowing any

node to access its tables. The degree of sharing was controlled by

specifying a percentage X, where X% of queries targeted the shared

tables, and the remaining queries were directed to the private tables

of each node. This configuration allowed us to test PolarDB-MP’s

performance across a spectrum of data-sharing scenarios.

5.2 Overall Performance
SysBench workloads. We first utilized SysBench to benchmark

PolarDB-MP’s performance, as depicted in Figure 7. For this test,

we used instances each equipped with 8vCPU and 32GB of memory.

We configured SysBench with 40 tables per group, and each table

contained 1 million records. We evaluate the throughput under

different workloads, read-only, read-write, and write-only, varying

the percentage of shared data from 0% to 100%. In Figure 7, we

present the absolute throughput on the left y-axis and the relative

throughput, normalized to a single-node setup, on the right y-axis

for each workload type.

For the read-only workload, PolarDB-MP always demonstrates

linear scalability because there is no contention between differ-

ent nodes. This is attributed to the absence of contention between

nodes, with the only additional overhead being the fetching of

timestamps from the TSO. However, this overhead is minimized

through the use of RDMA and Linear Lamport Timestamp [54], ren-

dering it negligible in terms of performance impact. In read-write

and write-only workloads, we observe near-linear scalability in

scenarios with well-partitioned data (0% shared data). However, as

the percentage of shared data increases, scalability starts to decline

due to the added overheads of data synchronization and transac-

tion coordination. Despite this, scalability remains considerable.

Remarkably, in scenarios with 100% shared data, the eight-node

cluster enhances throughput by 5.4 times in read-write workloads

and 3 times in write-only workloads compared to a single-node

deployment. These high performance and scalability are largely due

to the efficiency of PolarDB-MP’s PMFS. The PMFS plays a crucial

role in managing data and transaction coordination efficiently, even

under high data contention scenarios.

TATP performance. We then evaluate PolarDB-MP using the

TATP benchmark, as depicted in Figure 8. TATP workloads consist

of user-related queries, prominently involving unique subscriber

IDs. This characteristic facilitates effective database partitioning by

subscriber ID, significantly reducing contention between different

nodes when different nodes access different partitions. In this test,
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Figure 7: SysBench performance.

we configure TATP with 20 million subscribers per node. The re-

sults indicate that PolarDB-MP achieves linear scalability. When

the workload is well-partitioned, different nodes handle separate

data partitions This eliminates the necessity for inter-node data

transfer. Under these circumstances, each data page is exclusively

accessed by a single node, and the requirement for PLock arises

only once for each data page at its initial access point. Consequently,

PolarDB-MP does not incur additional overhead in TATPworkloads,

demonstrating efficient scalability and performance.

0
1
2
3
4
5
6
7
8
9

0
150
300
450
600
750
900

1050
1200
1350

1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 (

K
-Q

PS
)

Number of nodes

Figure 8: TATP performance.

TPC-C performancewithin a large-scale cluster. We then con-

ducted an evaluation of PolarDB-MP within a large-scale cluster

using the TPC-C benchmark. For this test, we configured PolarDB-

MP to scale up to 32 nodes, each equipped with 32 virtual CPUs

(vCPUs), culminating in a total of 1024 vCPUs. In line with pre-

vious research [16, 29], we set the think/keying time in TPC-C to

zero. TPC-C primarily simulates transactions related to a single

warehouse, with only about 11% of transactions involving cross-

warehouse operations. In our testing, we focus on recording New

Order transactions per second (tpmC) as well as transaction 95%

latency, as depicted in Figure 9. The top subfigure’s left y-axis indi-

cates the absolute throughput, measured in tpmC, while the right

y-axis shows the relative throughput, normalized to the perfor-

mance in a single-node setup. The results indicate that PolarDB-MP

demonstrates near-linear scalability from 1 to 24 nodes. Even when

scaled out to 32 nodes, despite a minor decrease in scalability, there

is a notable improvement in performance compared to the 24-node

configuration. Notably, at 32 nodes, PolarDB-MP achieved an im-

pressive throughput of 9.1 million tpmC, which is 28 times the

throughput of a single node. Regarding the P95 latency, there is

a slight increase as the number of nodes grows, suggesting that

PolarDB-MP maintains latency effectively even as it scales out. This

impressive performance of PolarDB-MP can be attributed to its ef-

ficient handling of scenarios involving shared data, minimizing

overhead. Furthermore, the system does not incur extra overhead

in situations where data is not shared among nodes. Additionally,

the disaggregated shared memory architecture of PMFS enables

PolarDB-MP to support a large number of nodes for scaling out.

These capabilities allow PolarDB-MP to exhibit not only high per-

formance but also significant scalability in the TPC-C benchmark.

These findings underscore PolarDB-MP’s potential as a robust so-

lution for large-scale, distributed database environments, offering

both performance efficiency and scalability.
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Figure 9: Performance of TPC-C within a large-scale cluster.
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Figure 10: Alibaba production workload.

Productionworkload. Finally, we run a trading service workload
from Alibaba’s production environment. It is memory-intensive

and contains a significant portion of write transactions. Figure 10

plots the throughput timelines of PolarDB-MP. This testing starts

with only one node. We add more nodes to the cluster at the time of

60, 120, and 180 seconds. When having more nodes, the throughput

is significantly improved. Since the workload is well-partitioned at

the application level, it does not have too much conflict among the

different nodes. Therefore, it shows near-linear scalability.
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Figure 12: Compare with Aurora-MM and Taurus-MM
within light conflict scenarios (10% shared).

5.3 Compare with Aurora-MM and Taurus-MM
Aurora MM [3] and Taurus-MM [16] represent the latest advance-

ments in multi-primary cloud-native databases. However, they are

currently neither available in the public cloud nor open-sourced
1
.

Thus, we compare with Taurus-MM and Aurora-MM based on

performance data from Taurus-MM’s paper. In this test, we mir-

rored Taurus-MM’s setup, including using nodes with 28 CPU

cores and identical SysBench configurations. Figure 11 depicts the

performance comparing with Taurus-MM. In this test, we config-

ured shared data percentages at 50% for read-write and 30% for

write-only workloads, reflecting the highest shared data scenarios

in Taurus-MM ’s evaluation. The y-axis of the figure represents

throughput, while the numbers on each bar indicate scalability, de-

fined as the relative throughput normalized to its own single-node

performance. Our evaluation shows that PolarDB-MP shows compa-

rable performance to Taurus-MM in a single-node setup. However,

PolarDB-MP’s superiority becomes evident in multi-node setups.

For example, in read-write and write-only workloads, PolarDB-

MP’s throughput is respectively 3.17 times and 4.02 times that of

Taurus-MM in an eight-node cluster. Notably, Taurus-MM’s scala-

bility within an eight-node setup reaches only 1.88 in read-write

and 1.5 in write-only workloads. Furthermore, increasing nodes

from 4 to 8 in Taurus-MM results in just a 25% improvement in

read-write workload and no improvement in write-only workload.

In contrast, PolarDB-MP’s scalability with eight-node is 5.64 in

read-write workload and 4.62 in write-only workload, which is

substantially higher than those of Taurus-MM. This significant

enhancement in performance highlights PolarDB-MP’s high scala-

bility and efficiency, particularly in scenarios with increased data

contention among nodes.

Taurus-MM’s paper only presents Aurora-MM’s relative per-

formance with the configuration of 10% shared data in SysBench

1
As of the end of 2022, Aurora MM is no longer available in the public cloud, and it is

unable to be tested now.

workload. We then compare with Aurora-MM and Taurus-MM in

the same configuration, as shown in Figure 12. As Aurora-MM sup-

ports up to only 4 nodes, its 8-node results are omitted. Even with

a low percentage of shared data, Aurora-MM shows no improve-

ment from 2 to 4 nodes in read-write workloads, and in write-only

workloads, 2 and 4 nodes perform worse than a single node. This

is attributed to Taurus-MM ’s use of optimistic concurrency con-

trol. In these light conflict scenarios, though Taurus-MM exhibits

higher scalability than Aurora MM, it still lags behind PolarDB-MP,

especially in the eight-node cluster.

5.4 Performance of secondary index updates
In this test, we compare PolarDB-MP’s performance under global

secondary index (GSI) updates with some shared-nothing-based

databases, e.g., TiDB, CockroachDB, and OceanBase, as shown in

Figure 13. They are all based on the shared-nothing architecture,

in which the GSI is also partitioned. In this case, when updating

a GSI, it has to update more than one partition, one for the pri-

mary key update and another for the secondary key update. So the

two-phase commit must be applied to update the GSI, and it will

significantly slow down the performance. In this evaluation, we

gradually increase the number of GSI in a table and measure the sus-

tained throughput with a high random insertion pressure and the

latency under single thread. As expected, PolarDB-MP significantly

outperforms other systems. Especially with one GSI, PolarDB-MP’s

throughput only drops by 20% compared to the throughput without

GSI, while other databases nearly drop by 60%-70%. When having 8

GSI, TiDB’s, CockroachDB’s and OceanBase’s throughput are less

than 20% of the throughput without GSI, but PolarDB-MP’s perfor-

mance is still acceptable. The latency also shows a similar trend

to the throughput. PolarDB-MP’s high-performance benefits from

its fundamental design. PolarDB-MP does not rely on distributed

transaction processing when conflict occurs on different nodes,

however, it exchanges data pages via a high-speed RDMA network

under a distributed locking scheme. This enables concurrent up-

dates on different nodes while guaranteeing lower latency than

conventional distributed transaction schemes.
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Figure 13: Performance of global secondary index updates.

5.5 Recovery
Finally, we focused on evaluating the recovery performance of

PolarDB-MP. In this test, we set up a two-node cluster, with each

node running SysBench read-write workloads. These nodes were

configured to access different groups of tables. To simulate a crash

scenario, we randomly kill node-1. The throughput timelines for
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both node-1 and node-2 during this event were captured and are

illustrated in Figure 15. At the 15-second mark, node-1 was killed

and then immediately restarted. A key observation following the

crash was that node-2 continued to serve applications without any

disruption, maintaining its original throughput. This uninterrupted

service was due to the fact that node-1 and node-2 were not sharing

data in this particular test setup. Consequently, node-2’s opera-

tions and its transaction processing capabilities were independent

of node-1, allowing it to continue functioning normally post the

node-1 crash. Furthermore, it was observed that node-1 was able

to resume operations swiftly, within just 10 seconds after the crash.

This rapid recovery can be attributed to PolarDB-MP ’s architecture,

where node-1 could retrieve most of the necessary recovery data

from the disaggregated shared memory, rather than relying solely

on shared storage. This approach significantly reduces overhead

and accelerates the recovery process. This test highlights PolarDB-

MP ’s resilience and efficient recovery capabilities, demonstrating

its potential as a robust and reliable solution for environments

where high availability and minimal downtime are crucial.
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Figure 14: PolarDB-MP recovery.

6 RELATEDWORKS
Single-primary cloud-native database. Many existing cloud-

native databases are based on the primary-secondary architec-

ture, such as AWS Aurora [49], Azure Hyperscale [14, 26], Azure

Socrates [1], and Alibaba PolarDB [27]. They typically consist of a

single primary node to process read/write requests and one or more

secondary nodes to handle read requests. This design allows for

scaling out read capacity by adding more secondary nodes. How-

ever, a significant limitation arises in write-heavy scenarios due

to the single primary node for write operations. Some of these

databases often claim the capability to automatically scale up the

primary node in response to increased write loads. Yet, this scala-

bility is inherently constrained by the resources available on the

physical machine hosting the primary node. In scenarios where the

machine lacks available resources, such as CPU or memory, scaling

up becomes challenging, if not impossible.

Shared-nothing databases. The shared-nothing architecture is
a prevalent scaling-out strategy, widely adopted by both key-value

stores [25, 37] and relational databases (e.g., CockroachDB [45],

Spanner [11], PolarDB-X [6], TiDB [19] and OceanBase [55], etc).

This architecture enables databases to distribute data across multi-

ple nodes, where each node operates independently, managing its

partition of the data. However, as discussed in Section 1 and Sec-

tion 2, these shared-nothing-based relational databases encounter

certain challenges. In contrast, PolarDB-MP employs shared storage

at the storage layer and utilizes the sharedmemory for coordination,

which offers a different approach to scalability and performance.

Shared-storage databases. Multi-primary databases based on

shared-storage design are an alternative to the shared-nothing ar-

chitecture, allowing each node equal access (read/write) to any

record in the database. The traditional shared-storage- databases,

like IBM DB2 Data Sharing [20] and Oracle RAC [9], suffer from

expensive distributed lock management and high network over-

head. Additionally, these traditional systems often lack the flexibil-

ity needed for dynamic cloud environments and generally incur a

higher total cost of ownership (TCO) compared to modern cloud-

native databases. Recent developments in cloud-native database

technology, such as Aurora MM [3] and Taurus-MM [16], have

introduced multi-primary capabilities to cloud environments. Both

cloud databases rely heavily on log shipping and log replay as ways

of page synchronization between nodes, introducing additional

overhead and thus inefficient buffer cache coherence. In addition,

Aurora MM, for example, adopts optimistic concurrency control for

managing write conflicts. However, this method comes with its own

set of trade-offs. While optimistic concurrency control can improve

performance under low conflict conditions, it can lead to significant

overhead when conflicts do occur. On the other hand, Taurus-MM

utilizes pessimistic concurrency control. However, it has its draw-

backs, particularly in the synchronization of pages between nodes

as mentioned above. This synchronization often involves storage

layer I/O and log application, which can be resource-intensive and

impact overall system performance.

Distributed transaction optimization. Recently, there are also
some research works to optimize distributed transaction processing

for high performance. Tell [28], FaRM [18], FORD [59], DrTM[51]

and DrTM-H [50] exploit RDMA network to improve performance

in main-memory databases. These main-memory databases are not

practical for many OLTP workloads that usually have TB/PB of

data and require persistency. However, PolarDB-MP supports PB-

level storage. SLOG [39], Calvin [48] all focus on the cross-region

database cluster, where usually the network is the bottleneck.

7 CONCLUSION
This paper presents PolarDB-MP, a multi-primary cloud-native

database that leverages a disaggregated shared memory framework.

In PolarDB-MP, each node within the cluster has equal access to

all data, enabling transactions to be processed on individual nodes

without the need for distributed transactions. The core component

of PolarDB-MP is the Polar Multi-Primary Fusion Server (PMFS),

which integrates disaggregated shared memory. PMFS comprises

essential functions: Transaction Fusion for transaction ordering and

visibility, Buffer Fusion for a global shared buffer, Lock Fusion for

concurrency control. These components are seamlessly integrated

with modern RDMA network technology, enhancing performance.

In our evaluations, PolarDB-MP shows a significant advantage over

leading solutions like Taurus-MM.
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