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ABSTRACT
The recent emergence of commodity persistent memory (PM) hard-
ware has altered the landscape of the storage hierarchy. It brings
multi-fold benefits to database systems, with its large capacity, low
latency, byte addressability, and persistence. However, PM has not
been incorporated into the popular disaggregated architecture of
cloud-native databases.

In this paper, we present PilotDB, a cloud-native relational data-
base designed to fully utilize disaggregated PM resources. PilotDB
possesses a new disaggregated DB architecture that allows com-
pute nodes to be computation-heavy yet data-light, as enabled by
large buffer pools and fast data persistence offered by remote PMs.
We then propose a suite of novel mechanisms to facilitate RDMA-
friendly remote PM accesses and minimize operations involving
CPUs on the computation-light PM nodes. In particular, PilotDB
adopts a novel compute-node-driven log organization that reduces
network/PM bandwidth consumption and a log-pull design that
enables fast, optimistic remote PM reads aggressively bypassing
the remote PM node CPUs. Evaluation with both standard SQL
benchmarks and a real-world production workload demonstrates
that PilotDB (1) achieves excellent performance as compared to
the best-performing baseline using local, high-end resources, (2)
significantly outperforms a state-of-the-art DRAM-disaggregation
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system and the PM-disaggregation solution adapted from it, (3)
enables faster failure recovery and cache buffer warm-up, and (4)
offers superior cost-effectiveness.
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1 INTRODUCTION
The past decade has witnessed the emergence and growth of dis-
aggregated cloud-native databases, with successful systems such
as Amazon Aurora [65], Alibaba PolarDB [14–16], and Microsoft
Socrates [7], spanning their processing across multiple layers of
network-connected resource pools (Figure 1). The compute nodes
(CNs) host the computation logic, leveraging remote but shared
DRAM space as an extension to the local buffer pool for memory ca-
pacity, and the replicated storage pool for data persistence and fault
tolerance. For users, the rich, elastic, and on-demand configuration
of disaggregated cloud-native databases cater to their diverse work-
load requirements and flexible scaling needs. For service providers,
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such services allow the reuse of database software infrastructures
as well as the consolidation/sharing of hardware resources.

SQL/TXN engine

Compute node (CN) Memory node (MN)

Log Storage node (SN)

Write

Append

DRAM buffer pool 

Write

Update

Write

Read

Read
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Figure 1: Sample disaggregated cloud-native DB architecture
spanning three layers: CPU, memory, and storage

Though such new architecture enables the independent scaling
of resources, there remain major constraints impeding its adoption.
First, DRAM disaggregation faces its limited per-machine density,
high (and fluctuating) price [47], and volatility, making it a more
costly and less reliable layer for hosting a cloud-native database’s
working set. Second, writes remain slow, especially with transac-
tions, as changes need to be persisted in time to the storage layer.

In this work, we argue that Persistent Memory (PM), also known
as non-volatile memory (NVM), driven by diverse technologies
such as 3D XPoint [20], BiCS Flash [21], and PCM [55], emerges
as an appealing layer for resource disaggregation. Compared with
DRAM, PM offers higher provisioning density (e.g., one DIMM slot
can hold 512GB Optane PM, but only 128GB DDR4 DRAM). It
simultaneously offers persistence, enabling fast writes and recov-
ery. In addition, PM preserves ultra-low-latency remote access via
RDMA, an advantage over fast SSDs. Such multi-fold capability
makes PM an ideal candidate for disaggregated databases, as we can
simultaneously cache hot pages and persist log data on a shared and
distributed PM layer. This brings on-demand, cost-effective memory
buffer expansion, fast data persistence, and enhanced availability.

However, existing PM disaggregation work has not fully consid-
ered database redesign to utilize the versatile PM units, focusing
instead on supporting native data structures [45] or simple applica-
tions like KV stores [63]. Applying these solutions to cloud-native
databases could easily lead to new bottlenecks on the shared, re-
mote PM nodes (PMNs). The first is the tension between the limited
PM write bandwidth [26, 32, 75] and the heavy bandwidth con-
sumption of existing solutions. The latter is largely due to writing
redundancy/amplification caused by logging and dirty data flushing.
Offloading log management to the PM side would reduce the PM
bandwidth pressure (by not sending dirty pages but reproducing
them by PM-side log application). On the other hand, this comes at
the price of heavy CPU involvement on the PM nodes, required to
handle offloaded data (especially their updates) and coordinate con-
current data accesses. Finally, complexmanagement logic on the PM
side would complicate the critical-path reads and writes. Both these
PM-side bottlenecks (write bandwidth and CPU), unfortunately,
conflict directly with the main selling point of PM disaggregation
for the cloud: having a shared PM node pool supporting many
compute nodes running database instances.

To address these challenges, we propose PilotDB, a novel PM-
disaggregated cloud-native database architecture featuring the fol-
lowing innovations.

First, PilotDB embodies CDLog (Compute-node-Driven Logging),
a central logging mechanism that efficiently offloads bulk data to
the PM layer as a large, fast page buffer, yet with light computation
there to support speedy logging and update handling. While retain-
ing page-based data organization of relational databases, it discards
the conventional page-based WAL organization and instead adopts
fine-grained, physical logging, where data entries directly embed
changes at a mini-page granularity as well as concerned remote PM
memory addresses. This allows compute nodes only to flush CDLog
entries to remote PM via one-sided RDMA and enables light-weight,
DMA-based log application on the PM nodes, simultaneously re-
ducing PM nodes’ CPU and write bandwidth consumption.

Second, PilotDB is designed to be coordination-free, even in the
presence of concurrent reads/writes to the PM log and buffers,
further shaving CPU consumption on the PM nodes. This is enabled
by (1) lock-free data structures designed to manage the PM log area,
with light-weight conflict check mechanisms and (2) a novel log-
pull mechanism that allows compute nodes’ query processing to
perform remote reads optimistically, with logs “read back” from
the PM side in the rare occasion of the retrieved PM-cached page
found stale, again enabled by our CDLog organization.

We implemented a PilotDB prototype atop MySQL [23] and
evaluated it using both industry-standard benchmarks and a pro-
duction workload. The results show that PilotDB achieves up to
98.0% of the throughput of a monolithic configuration (which is
given sufficient local DRAM and PM-based storage), even with the
vast majority of its data placed on remote, disaggregated PM. With
most workloads, PilotDB significantly outperforms LegoBase [74],
a state-of-the-art DRAM-disaggregated cloud-native database, and
LegoPM, a solution incorporating PM disaggregation. In addition,
we made a best-effort attempt to compare PilotDB with Aurora
and PolarDB, two mainstream cloud-native database services on
the market that adopt storage disaggregation, by allocating Au-
rora/PolarDB instances with sufficient local DRAM (and careful
hardware alignment in other resource dimensions). Results show
PilotDB achieves significantly better or comparable performance.

In addition to the above performance results, our multi-tenant
tests show that PilotDB has strong service scalability, with a 4-node
PM pool serving 32 concurrent DB instances at only a 10.8% per-
formance loss against running each instance exclusively. Moreover,
PilotDB brings instant failure recovery, up to 15.27× faster than the
baselines, regardless of the crash site. Finally, our cost analysis fur-
ther confirms the cost-effectiveness of PilotDB. Compared with its
closest competitor in cost-effectiveness, the PilotDB configuration
is 38.3% lower in hardware ownership cost, uses only 9.1% DRAM
across CN and PMN, and 12.5% PMN’s CPU core resources, while
delivering 91.5% higher throughput per dollar.

To our knowledge, PilotDB is the only database design that
leverages all major features of PM for disaggregation: capacity,
persistence, and RDMA-based low-latency remote accesses. Our
research contributions are as follows:

• We advocate a flexible 3-level cloud-native database architec-
ture with aggressively disaggregated resources. It makes CNs
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computation-heavy yet data-light, dramatically reducing DRAM
provisioning while enabling agile recovery/migration.

• We propose a novel log-centric DB operation mechanism driven
by a new log organization (CDLog). It adopts fine-grained and
physical log entries designed for fast data persistence and CPU-
bypassing PM-side log application, making compute nodes ap-
proach stateless services [16].

• We further present a minimal CN-PMN data path design not
seen in prior systems, with key functionalities (logging, opti-
mistic read, and log-pull) each done by a single one-sided RDMA
operation, without involving PMN-side CPUs.

• Supported by performance evaluation and cost analysis results,
this work provides evidence that PM is large, fast, and cheap
enough to be used for on-critical-path data caching and persis-
tence, contributing a practical use case for true disaggregated
PM offerings in the near future.

2 BACKGROUND
2.1 Disaggregated Cloud-Native Relational

Databases
Cloud-native databases refer to systems built on modern cloud
infrastructures and offering OLTP processing as a service. Com-
pared with existing DB systems simply running on the cloud, they
are designed to leverage better cloud benefits such as resource
auto-scaling and high availability. Database services’ demands in
elastic resource allocation and guaranteed latency render them
ideal customers for the ongoing resource disaggregation innova-
tions [3, 28, 58, 62], driven partially by the rapid development of
low-latency hardware technologies like RDMA. Recently, cloud-
native databases [7, 12–16, 25, 46, 57, 65, 74] have been adopting
network-connected, flexibly provisioned resource pools, often using
software-hardware co-design to reduce network overhead while
achieving comparable performance to conventional designs with
monolithic resource allocation.
Two-tier architecture (storage disaggregation). Most of the
above cloud-native DBs support storage disaggregation with inde-
pendent compute and storage resource tiers. For example, Alibaba’s
PolarDB [14, 15] replaces its local storage with a layer of disaggre-
gated storage nodes (SNs). The compute node (CN) side retains most
of the database logic, such as transaction execution, concurrency
control, Write-ahead Log (WAL) [48] generation, and failure recov-
ery. Only the persisted states (WAL and data pages) are pushed to
the remote storage, with optional replication for fault tolerance.

To reduce network pressure, AmazonAurora [65] and Socrates [7]
further offload the critical page materialization and fault tolerance
modules. Their compute nodes write only WAL entries, instead of
pages, to the storage nodes. The latter continuously iterates over
these log entries in the background and applies the modification
chains to the target data pages, adopting a design referred to as
“the log is the database.”
Three-tier architecture (DRAMdisaggregation). More recently,
resource disaggregation has expanded naturally to the memory
layer [3, 28, 39, 66], consolidating memory resources and decou-
pling their provisioning from CPU resources. Recently proposed
memory-disaggregated cloud-native databases, such as PolarDB-
serverless [16] and LegoBase [74], possess separate compute node

(CN) and memory node (MN) layers, enabling independent mem-
ory resource scaling. This design allows a CN to maintain a very
small memory pool to cache the hottest data, relying on the remote
memory pool on the MNs as a buffer extension. Meanwhile, the
memory-disaggregated database still needs to write WAL entries to
the storage node (SN) when a transaction commits, while it flushes
data pages from the CN to both the MN and SN.
DRAM buffer and storage limitations. Though promising, the
three-tiered disaggregated cloud-native DB architecture has two
major problems. First, DRAM has a limited per-machine density,
with a single DIMM supporting at most 128GB currently, leading
to high monetary investment for DRAM nodes. Second, DRAM
is volatile, therefore slow log persistence to storage (where fast
RDMA does not apply) is still required and DRAM-disaggregation
solutions suffer a long recovery time, as to be shown later in our
performance comparison. Note that in-memory replication helps
with the second problem above, at the cost of intensifying the first.

2.2 The Case for Persistent Memory
Disaggregation

Persistent memory (PM) emerges as an appealing intermediate
media, bridging between the DRAM-based computation layer and
SSD/HDD-based storage layer. Multiple technologies, developed by
various vendors, emerged frommanufacturing PM chips, such as the
Intel 3D XPoint [20], phase change memory [55], STT-MRAM [8],
etc. In 2019, Intel released the first commodity PM product – the
Optane PM [31]. More recently, CXL-based solutions approximate
PM by combining DRAM, flash SSDs, and memory-compatible in-
terconnects [22, 61]. Despite their diversity, these PM chips simul-
taneously provide byte-addressability, RDMA accesses, persistence,
and orders-of-magnitude latency advantage over fast SSDs. Cost-
wise, the PM sits squarely between DRAM and flash SSDs, thus
with its superior capacity density (e.g., up to 512GB Optane PM
per DIMM), bringing a cost incentive as a candidate for resource
disaggregation as well.

PM has attracted attention in the database community [9, 30,
34, 40, 64, 77]. However, most of the above systems, including the
recent Oracle Exadata [51], treat PM as a locally attached resource
and have not considered it a layer of disaggregated resources.

Meanwhile, there is recent work on PM disaggregation [45, 63],
adding a group of PM nodes (PMNs) to the system. For instance,
AsymNVM [45] leverages PM disaggregation to build persistent
data structures with high-performance writes. Its downside is heavy
contention on the CPU cycles of remote PM nodes, for ensuring
data durability, consistency, and availability. In contrast, pDPM [63]
makes the PM layer passively serve data, with the compute nodes
directly managing the remote PM resource to eliminate remote
CPU consumption.

2.3 PM-Specific Disaggregation Challenges
Previous PM disaggregation proposals [45, 63] focus on supporting
native data structures or KV stores. Relational databases, on the
other hand, possess much higher software complexity, posing func-
tionality placement challenges not addressed by existing solutions.
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On the one hand, an onload design, such as pDPM [63], leaves
the PMNs’ CPU out of the loop of handling logs and pages. Mean-
while, it makes the PM/network bandwidth more bottleneck-prone
due to dirty page flushing, log application, and fault tolerance, all
driven by the CN in pDPM (as shown by the similar LegoPM be-
havior in Table 1). On the other hand, an offload design, such as
AsymNVM [45]), significantly reduces bandwidth consumption, at
the cost of heavy remote CPU usage to serve data and ensure data
durability, consistency, and availability. This creates a new CPU
bottleneck, just when the PM’s large capacity and high-density
installation enable a desirable disaggregation setup, with each PMN
supporting many tenants.

The onload-offload tradeoff is further complicated by RDMA, a
crucial mechanism enabling low-latency memory disaggregation.
By leaving remote data managed by PMNs, it is challenging for
offload solutions to utilize the faster and less CPU-consuming one-
sided RDMA. Instead, it requires using many RPC operations, with
heavy PMN-side CPU involvement. Latency-wise, our tests find
that one-sided RDMA costs under 8 µs end-to-end for 16 KB page
remote write, 65.6% shorter than the RDMA-based X-RDMA [44],
one of the fastest RPC frameworks to our knowledge.

This RPC reliance, combined with the log management bur-
den, results in a PMN CPU bottleneck demonstrated by the similar
PilotDB-RPC baseline in Figure 6.

Finally, both the existing onload and offload solutions focus on a
two-tiered architecture, where the disaggregated PM layer hosts
the entire dataset.

Our proposed PilotDB can be viewed as a hybrid approach sitting
between existing onload and offload approaches. It also advocates
a three-tier memory/storage disaggregation architecture, where
it couples large, PM-based remote buffers with smaller DRAM lo-
cal buffers for cost-effectiveness, especially considering the access
skewness common in DB workloads.

3 PILOTDB OVERVIEW
3.1 Design Rationale
To our best knowledge, this is the first work exploring PM disag-
gregation for cloud-native relational DBs, the most popular DBMS
model [24], to take full advantage of the multifaceted strengths of
PM. We focus on OLTP workloads, which often contain a substan-
tial amount of updates and have stringent latency and recovery time
requirements. Thus, OLTP engines favor a large DRAM buffer pool
for speedy lookup, plus a fast storage layer for efficient data flushing
(WAL in the foreground and dirty pages in the background). This
leads to a natural design with a shared PM layer consisting of PMNs,
hosting the bulk of hot data and handlingWALwrites, shifting these
two duties from the DRAM and storage layers, respectively.

However, we face two major challenges in designing such a
disaggregated PM layer, as detailed below.
Challenge 1: PM bandwidth contention: PM has considerably
lower bandwidth than DRAM. Redirecting the vast majority of
DRAM traffic (loading pages, logging WAL entries, and flushing
dirty pages) to remote PM, however, will generate high PM band-
width demands, especially for writes. To alleviate such bandwidth
tension, like existing offload approaches [5, 7, 45], PilotDB sends
only logs to PMNs, which update PM-buffered pages accordingly

for subsequent reads. It however differs from existing solutions
as its PMNs enable almost complete CPU-bypass on critical query
paths: it uses a single one-sided RDMA operation to perform key
tasks such as WAL writing, log application, and ultra-low-latency
page read and persistence.

The central idea of PilotDB is to decouple the storage/persistence
and computation components of DB logging: logs are shipped to and
applied at the PM side, but managed and controlled at the compute
side. For this, we propose CDLog (Compute-node-Driven Log), a
new logging mechanism enabling fine-granularity page updates,
eliminating the log application overhead on PMNs, and maximizing
the use of one-sided RDMA. CDLog re-organizes the PM-side log
layout to contain physical page content at a mini-page granularity,
with relevant metadata addresses embedded. From the data transfer
point of view, this greatly reduces the network and PM bandwidth
consumption. From the computation point of view, PM-side log
application becomes simple, fast memory copy operations, resulting
in light-weight remote log management.
Challenge 2: PM side CPU consumption: The PM’s large capac-
ity and high-density installation allow a PMN to support many ten-
ants. However, its CPU resources could quickly become a scalability
bottleneck. To this end, we strive to make PM-side compute-light,
while still processing log applications and coordinating concurrent
CN accesses.

On top of CDLog, we further build a PM-side data plane to vir-
tually eliminate CPU consumption. This includes lock-free data
structures, such as ring buffers for PM-side logs, to reduce cross-
network coordination for concurrent accesses by CN’s log writes
and PMN’s application. Recognizing the necessity of version check
for stale read avoidance, especially with our PM-side fast log ap-
plication, we devise an optimistic log-pull mechanism. It onloads
version check and on-demand log application to CNs, so as to sim-
plify the PMN functionality and avoid slowing down queries on
the critical path. In more detail, a CN could directly read remote
PM pages using one-sided RDMA, only performing on-demand log
application locally by pulling back appropriate log entries from a
PMN in the rare case of finding a page stale (whose extremely low
frequency is given in Table 3).

3.2 PilotDB Architecture Overview
We propose a 3-level architecture for cloud-native relational DBs
spanning three layers of nodes, as described below.
Compute node (CN). CNs are provisioned with sufficient CPU
cores and limited DRAM for serving user queries. Each CN hosts
SQL/TXN engine threads and a moderate-sized local buffer pool
(LBP) to cache the hottest data in DRAM.
Persistentmemory node (PMN). PMNs are a set of PM-equipped
servers hosting a layer of shared PM resources and exposing a mem-
ory interface to the CNs. A cloud-native DB instance could provide a
certain amount of PM space to accelerate its processing. When such
space is allocated, the involved PMNs run a light-weight PilotDB
PMN daemon supporting two PM-based partitions transparent to
DB users: a remote buffer pool (RBP), with sizes typically much larger
than their LBP counterparts, and a relatively small CDLog store, for
fast WAL persistence.
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Figure 2: PilotDB architecture overview

A central registry service allocates PM resources to a DB in-
stance and helps its CN(s) connect to the appropriate PMN group
upon database bootstrap. RBP pages are distributed by hashing for
load balancing and log stores are replicated for availability, across
multiple PMNs. Within a DB’s PMN replicas, one is appointed the
primary, from where PilotDB pulls log data for update application
(regardless of whether the target RBP page is on local or remote PM,
thanks to one-sided RDMA). As the above distributed system ele-
ments leverage mature techniques, this paper’s discussion focuses
on the PM-disaggregation aspect of DB re-design.
Storage node (SN). The storage layer consists of many SSD/HDDs
as long-term and low-cost storage. Each CN is further connected
to a group of SNs for distributed file system (DFS) service, with file
interfaces and RDMA-based high performance. PilotDB utilizes the
storage layer for storing the complete databases and checkpoints,
in traditional manners, so the discussion in this paper focuses on
CNs and PMNs.

Figure 2 illustrates the PilotDB overall architecture. On its left,
we give a sample cloud-native DB instance’s resource specifications,
which are individually and dynamically allocated from the corre-
sponding disaggregated resource pools shown in the middle (CNs,
PMNs, and SNs). Note that each box containing “PM” or “SSD/HDD”
is a node (PMN or SN) serving disaggregated resources.

On the right of Figure 2 we give the placement of major DB soft-
ware components, with PilotDB logic located on the compute and
PM layers. Here the arrows outline PilotDB’s transaction execution
workflow. A transaction first accesses the LBP, which caches the
most recently used data pages, at a latency of ∼0.91 µs. Upon an
LBP miss, the CN contacts the appropriate PMN to fetch the target
page from its RBP (①, at ∼8 µs). If the RBP also misses, the page is
fetched from the shared storage to the CN (②, at ∼277 µs), which im-
mediately sends another copy to its RBP (further discussion below).
CN collects log entries from writes within the node and flushes
them to the CDLog store of its primary PMN (③), for background
log application to RBP pages (④). In addition, the CN sends one
or two copies of the log data to other PMNs for replication. PMNs
evict colder pages when under space pressure, with dirty pages
flushed to shared storage (⑤).

We design the PilotDB DRAM-PM page buffers to be inclusive:
all pages cached in the CN-side DRAM have a copy in the PM
layer, for multiple reasons. First, such a design keeps a copy of the

CN
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Figure 3: PilotDB CN architecture and page structure

hottest CN-side pages in PM, enabling fast CN crash recovery and
migration. Second, this allows fast LBP-to-RBP page eviction, by
removing the need for page flush upon an RBP hit (which leads to
page promotion to LBP). We choose instead to pay the CN-to-PMN
page copy overhead upon an RBP miss, which is a less frequent
event. Finally, given that PilotDB is designed to enable lighter and
more agile CNs with an order-of-magnitude smaller LBP than RBP,
plus the cheaper PM storage, the space cost of making the hierarchy
inclusive is fairly low.

4 DESIGN
4.1 CN-Driven Log and Buffer Management
PilotDB proposes consolidating the available PM resources on dedi-
cated PMNs (currently requiring high-end processors), which form
a separate, shared, and disaggregated PM layer. Space allocation
from this layer is individually and dynamically provisioned toward
the need of each DB instance.

A key design decision of PilotDB is to split each 16KB page
into configurable, equal-sized mini-pages. This follows recent prac-
tice [64, 77] for fine-granule data access, which in our case avoids
read/write amplification between CNs and PMNs. By default, the
PilotDB mini-page is sized at 256 B, the 3D-XPoint physical media
access granularity [71]. Our data structure and workflow discussion
below mainly focuses on mini-page-level management.

Figure 3 illustrates the CN-side major data structures in DRAM
and the associated transaction execution data paths. LBP-related
details are omitted, as PilotDB adopts standard LBP management.
Note that RDBMSs like MySQL log logical operators, requiring page
flushing applying changes to full pages, a procedure both CPU- and
bandwidth-expensive. PilotDB’s CN retains the WAL operations,
but avoids such costly dirty page flushing with its CDLog, where
entries encode physical page changes at a finer granularity.
PM-knowledgeable CN. A unique PilotDB design feature is that
the CNs have full knowledge and access to the remote PM space,
essential to fast, RDMA-based remote PM access. To this end, each
CNmaintains, as its central page management data structure, a page
metadata table (PMT). It is an open-addressing hash table mapping
page IDs to the location of metadata structures for each buffered
page, as shown in Figure 3. For pages cached locally, in addition
to recording its LBP address (the “LBP page” field), the PMT entry
also points to two auxiliary data structures: (1) a dirty-bit vector
tracking which of its mini-pages have been modified and (2) a local
LSN vector recording the highest log sequence number updating
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each mini-page at CN side. Memory space overhead of PMT is quite
small: 32 B per 16 KB page, resulting in a 2GB PMT for a 1 TB DB.
One-sided PM Page Registration. As mentioned earlier, an RBP
miss will bring the page directly to the CN’s LBP, which will be
copied to its RBP. For this, the CN first performs RBP page regis-
tration on the PMN to get one PM page allocated. To avoid using
expensive RPC calls, we instead bind each metadata entry with one
remote page address during LBP initialization, as the CN knows
the remote PM layout, i.e., filling the Addr3 field shown in Figure 3
in advance. After copying this page to PM, the CN also persists the
“RBP page” field there, for PMT reconstruction under CN crash. Sim-
ilarly, page de-registration is done upon RBP page eviction, in the
background. Though not shown in Figure 3, the CN maintains LRU
lists for both the LBP and RBP, dictating RBP cache management.
Fast on-critical-path data persistence. Upon transaction com-
mit, PilotDB persists corresponding changes by writing CDLog
entries to the allocated area in the PM-side CDLog store (Figure 4).
Each CDLog entry consists of two parts: metadata and data. Multi-
ple PilotDB design decisions accelerate such data persistence.

First, we adopt the mini-page level logging for low PM/network
bandwidth consumption. At commit time, PilotDB inspects the
dirty-bit vector of touched pages to figure out the list of dirty mini-
pages. For each dirty mini-page, it creates a log metadata entry –
<laddr, paddr, lsn>, filled with the address of the mini-page’s
PM-applied LSN vector (to be introduced below), the PM address
of the target mini-page, and the latest LSN updating this page in
this log entry. Note that although PMT entries are page-level, given
the page address and a per-page vector, mini-page addresses can
be easily calculated by the CN using offsets. Alongside the log
metadata entry, it also generates a log data entry, containing the
new content of that mini-page.

Second, a PilotDB CN writes the two entries to the tail of the log
data and metadata ring buffers at the PM side, respectively, via two
one-sided RDMA operators. This allows us to bypass the PMN-side
CPU and avoids CN-side memory copies (from the conventional
log buffer to the RDMA-registered buffer). Also, we adopt RDMA
batching as an additional optimization to reduce network overhead.

4.2 Light-Weight, RDMA-Friendly PMN
Processing

PMN data structures. Figure 4 illustrates PilotDB’s major PM-
resident data structures, designed to facilitate high-speed, light-
weight, and lock-free PMN processing.

The right side of the figure depicts the RBP, a page server with
capacity and persistence advantages over the DRAM-based LBP
and a speed advantage over shared storage. The PM also stores
two vectors for each RBP-cached page: a PM-applied LSN (aLSN)
vector and a PM LSN (pLSN) vector. As the PMN side does not
generate new updates, it only applies the CN-side changes to RBP-
cached pages, recording its own progress by noting in the aLSN
the latest LSN whose changes have been applied to its mini-pages.
pLSN, instead, is written by the CN to persist the target LSN each
mini-page should be updated to and only used for CN recovery.

The left side of Figure 4 shows the CDLog store, with two ring
buffers for log entries shipped from the CNs, one holding metadata
and the other holding the corresponding mini-page changes. Such
a dual-ring-buffer design aligns with the common practice adopted
in mainstream DBs (including MySQL) that keeps metadata and
actual data changes in separate data structures. The CN needs to
write to the two ring buffers with two RDMA operations, which
can however be batched.
Light-weight log application. Given the major data structures
connecting the CN and PMN spaces, we now present the central
techniques that make the PMN-side computation light-weight. Here
the main task is to scan the WAL entries and apply updates accord-
ingly. PilotDB enables fast log application with little PMN CPU
consumption for two reasons.

First, with CDLog embedding target PM (mini-)page addresses
in its log entries, a PMN does not need to parse logical operations
in the log or execute encoded mutations, as with conventional redo
logging mechanisms [48]. Instead, it performs much cheaper direct
memory copies. A log merger (LM) daemon running in the back-
ground on the PMN applies changes from the log data ring buffer to
their destination mini-pages and updates the corresponding aLSN,
whose address is given in the log metadata entries.

Second, PilotDB drives the above log application using a DMA
engine for memory copy. Here we employ RDMA,which accelerates
the case where the CDLog entry and its corresponding page are not
on the same PMN, inevitable with our fully disaggregated design.
It also works well with local data copying when the two objects
co-reside. The result is a virtually CPU-less DB page server. Note
that for such write-intensive workloads, the log merger can utilize
RDMA doorbell batching [35], which reduces polling overhead by
consolidating multiple one-sided RDMA operations’ completion
entries (to enter the completion queue for polling) into one.
Optimistic remote read. Upon LBP misses that are RBP hits,
the CN retrieves the page from a PMN. Simply issuing a one-sided
RDMA read primitive is not safe, as the page could be stale, with
pending log application. The conventional design adopted by exist-
ing “the log is the database” systems [65] waits until the remote PM
layer scans the log buffer, parses log entries, and executes the en-
coded logical mutations against target pages. Such on-demand log
application introduces heavy PMN CPU involvement. In particular,
despite that stale page retrieval is rendered very rare by PilotDB’s



Persistent Memory Disaggregation for Cloud-Native Relational Databases ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

fast log application, each RBP page the CN reads has to go through
this PM-side freshness check for correctness, which requires RPC
and precludes the use of much faster one-sided RDMA primitives.

Again, with PilotDB’s CDLog design allowing a CN the full
knowledge and control over its PM-side content, it affords a differ-
ent approach: performing an optimistic remote read and conducting
the page freshness check locally. Recall those metadata items like
the remote page addresses are stored locally within the CN-side
PMT. Upon an LBP miss, the CN will simply read the target RBP
page using one-sided RDMA. It then checks if the page is stale by
comparing its aLSN vector (fetched together with the RDMA page
read) against the local one. In most cases, the two vectors match
and the page passes the freshness test, concluding the RPB-to-LPB
page fetch.

In the less likely case of the page failing the above test, rather
than waiting for the remote updates to fetch again, the CN pulls
the relevant log data to apply the changes itself locally. Again, this
is easy as (1) the CN has all the needed addresses in its PMT for
one-sided RDMA and (2) only the latest log per mini-page is needed
with our physical log design.
Data integrity and consistency. Our workflow involves RDMA
operations accessing disjoint DRAM/PM locations storing compo-
nents of the same data item, such as the log metadata and log data
in separate ring buffers. Therefore we append an 8-byte checksum
field to the log metadata entry to protect data integrity and avoid
partial writes in the case of crashes. This field will be set by the CN
prior to log flush and later used by both the PMN and CN to verify
the completeness of RDMA data transfers.

To offer scalable concurrent CN/PMN accesses to the CDLog
store, PilotDB strives for a lock-free PMN design to avoid the use
of particularly expensive distributed locks.

First, the chance of ring buffer overflow is greatly reduced by
the fact that the CN side (log producer) is responsible for all the
heavy lifting in transaction processing, while the PMN side (log
consumer) only performs light-weight log application, with roughly
two orders of magnitude difference in latency. With the CN/PMN
going around the ring buffers producing/consuming log items with
strictly incrementing LSNs, accidental overreads/overwrites can be
easily avoided with additional coarse-grained monitoring. For ex-
ample., PilotDB maintains a per-PMN Global applied LSN (GaLSN),
which records the LSN of the last entry that the LM applied and
is checked periodically by the CNs. This way, no locks are needed
to coordinate the CNs and PMNs in populating and consuming
the shared ring buffer contents. The log-pull operations, similarly,
are one-sided sneak peeks that do not interfere with the PMN log
merging operations.
Page eviction. With our 3-layer architecture, there exist two types
of page eviction. One is when the LBP is nearly full, prompting
background eviction to the RBP. Here the CN does not need to
flush dirty pages to PM, as corresponding page changes are already
propagated to PMN by CDLog. The other is when the RBP is nearly
full, prompting its background eviction to the storage layer. In
order to unify eviction handling and again to reduce the PMN CPU
consumption, we maintain one CN-side flush-list to coordinate both
LBP and RBP background dirty page flush to the storage.

4.3 Replication and State Recovery
We employ two tiers of replication to offer high data availability
and fault tolerance. The first tier replicates CDLog entries across
multiple PMNs. The second tier is the standard replication within
the underlying SSD-based shared storage. Considering the much
higher price of PM compared to SSDs, we decide to replicate only
log data among PMNs, while keeping only one copy of each page on
one PMN. Since one-sided RDMA write is fast, we make a CN issue
a group RDMA write to flush log entries to the ring buffers at all
PMN replicas. To replicate between PMNs and shared storage, we
periodically create checkpoints and flush them to the underlying
shared storage, where all data are fully replicated across storage
nodes. Once a dirty page is persisted in the shared storage, we
can simply discard its multiple log copies and change its status
from “dirty” to “clean”. With the above design, state recovery in the
presence of failures can be made straightforward. Here, we consider
two types of failures.
CN failure. When a CN restarts after it crashes, it first connects
back to its PMNs, using connection information managed by the
registry service, for instant recovery. As the cached PM pages are
still available and reusable, only a small amount of corrupted states
left by incomplete transactions need to be properly handled.

More specifically, the CN fetches three necessary metadata items
from the PMN, all persisted at fixed locations. These include the
RBP-page-fields (written to PMN upon page registration), so that it
could reconstruct the CN-side PMT for virtual memory mappings.
In addition, it reads the latest LSN to continue its monotonically
increasing LSN assignment. To recover from a corrupted state, the
CN pulls undo pages from the PMNs, which record uncommitted
transactions and pre-images of the affected data pages. These pages
are written using the conventional database undo logic, with mod-
ifications flushed to PMNs via our CDLog commit. The CN then
rolls back these transactions by restoring their pre-images.

Finally, after these steps, the CN returns to its normal state
and can start processing queries immediately. Meanwhile, at the
PMN side, the state recovery will take place when the log merger
consumes CDLog entries from the GaLSN position by applying
their changes. Since the LBP is relatively small and a large fraction
of pages are still cached remotely, the CN’s warm-up phase will be
both short and light-weight, again using RDMA operations.
PMN failure. First, we consider the case where a PMN crashes but
the physical server on which it runs can be restarted. Due to the
persistent nature of PM, the state of the PMN before the crash will
be available after a restart. The PMN maps the PM region to the
previous virtual memory address to keep the CN-side remote page
virtual address information still valid. In this case, when the PMN
restarts, it will notify the corresponding CN via re-connection to
start a similar corrupted log identifying procedure for the above CN
failure handling to undo unfinished transactions. Then the PMN
could start accepting CN’s requests immediately without a warm-
up phase, as all pages are already persisted on that server and can
be reused.

Second, we have to handle the worst case where the server on
which the primary PMN runs is no longer available and needs to
be replaced with another PM-equipped server. In this case, log
entries need recovery and the RBP needs warm-up. The new PMN
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could start serving CN requests when the former is done from the
log replicas. In the background, the PM log merger executes its
routine log application from the latest checkpoint to bring pages
(fetched from the shared storage) up to date. However, this affects
the handling of LBP misses. If the target page was cached on the old
PMN prior to its crash, we need to check if it has been updated to
the latest version. If not, the CN fetches a clean version of that page
from shared storage and performs log-pull to re-generate its most
recent version. Simultaneously CN pushes the latest local pages
version from the LBP to the RBP.

Compared with the instant recovery from CN failures, it will
take a longer time to warm up the PMN’s RBP through RBP misses.
However, since our design distributes pages across all PMNs, this
cost can be diluted when more PMNs are added. This has been
confirmed by Ongaro [50], a successor of RAMClouds [53], which
scatters backup data across a large number of servers and harnesses
them in parallel to reconstruct lost/corrupted data.

In summary, our failure handling follows conventional RDBMS
recovery and brings no semantic change from the MySQL design
regarding recovery or data consistency. Note that the procedure
works regardless of whether any of the CNs co-locate with a PMN.
The main difference is performance: with the bulk of dataset resid-
ing in RBP, recovery is faster, especially with CN failures. Figure 8
gives related results.

5 EVALUATION
PilotDB is implemented in around 5000 lines of C++ code, reusing
DFS-like storage. CN runs amodifiedMySQL database, with changes
mainly within two major areas: (1) the log module, where we re-
place the original WAL with CDLog (plus new mechanisms such as
log-pull) and (2) the buffer pool module, where we retain theMySQL
LRU to manage the cached pages while extending the buffer hierar-
chy to add the RBP. The PMN runs a light-weight daemon whose
major tasks include background log application and recovery.

In this section, we present the evaluation results on PilotDB’s
overall performance and performance breakdown, recovery, elas-
ticity, and cost efficiency.

5.1 Experimental Setup
Test platform. We use a heterogeneous cluster composed of three
groups of physical servers: (1) 4 nodes forming the disaggregated
PM layer, each equipped with two Intel Xeon Platinum 8260 CPUs,
256GB DDR4 DRAM, a 4x128GB 3D XPoint Intel Optane DC Per-
sistent Memory per socket (in App-Direct mode), and 25Gbps net-
work connection, (2) 8 servers with a weaker network connection
(10Gbps), each with 2 processors and 128GB DRAM, and (3) 6
servers forming the shared storage layer, providing a 3-way repli-
cated, cloud distributed file system service, leveraging SPDK [18],
RDMA, and NVMe SSDs. Note that the compute layer is formed
by nodes from both group (1) and group (2), emulating actual het-
erogeneity seen in cloud systems. When a node in the group (1) is
used as a CN, it accesses remote PM only (PM attached to other
PMNs). We enable fast RDMA access to PM by configuring it in
devdax mode [19].

Baseline setup. We attempted to compare with DBs running on
existing disaggregated PM systems, such as Hotpot [59]. Unfortu-
nately, we could not find a working system with compatible Linux
kernel.1 We therefore make our best effort to set up alternative
designs, with the following baselines:
• “100D/0 MySQL-ideal”, a single-node running MySQL with all
resources local, including a 100GB DRAM buffer and 512GB
Optane PM for WAL persistence and storage.

• “10D/100D LegoBase”, a DRAM-disaggregated, cloud-native rela-
tional DB [74]. Its CN runs the MySQL kernel with a 10GB local
and a 100GB remote DRAM buffer for extended cache, persisting
WAL and pages to shared storage.

• “10D/56D LegoBase”, same as above except that the remoteDRAM
is configured at 56GB, to match the hardware cost of 100GB Op-
tane PM.

• “10D/100P LegoPM”, a PM-disaggregation solution by adapting
LegoBase, replacing its remote DRAM buffer with a PM buffer.
Unlike PilotDB, it simply offloads RBP management and WAL
persistence to the PMNs.

Systemconfigurations. To evaluate scenarioswith large databases
and to examine PilotDB’s potential in reducing local DRAM require-
ment, we limit the LBP size to 5% of the total dataset in most cases
and a 100GB RBP (half of the DB size for most of our tests). Note
that unless otherwise noted, we deploy a single CN as this work
focuses on evaluating alternative resource disaggregation designs
for relational DB. We do deploy more CNs in our multi-tenant tests
to demonstrate the service capacity of our shared PM layer.

We align the CPU resource allocation for the compute nodes of
all systems, giving 16 cores per CN in most cases. Unless stated
otherwise, we allocate sufficient CPU cores (26 in our case), per
PMN/MN for memory disaggregation, so that the baseline systems
are able to demonstrate their performance without saturating the
remote CPU resources.
Workloads. We evaluate with two standard OLTP benchmarks
(TPC-C [11] and Sysbench [38]), plus a production MySQL work-
load. For Sysbench, we set up a database consisting of 32 tables,
each with 28M items, creating a total footprint of 200GB. Requests
are issued using Zipfian-0.99, following production workload statis-
tics [17]. We adopt Sysbench’s standard write-ratio configurations:
RO (read-only), WO (write-only), and RW (7:2 R-W ratio). We use
the TPC-C for MySQL implementation by Percona [54], which
reports throughput and tail latency. We configure it to use 2000
warehouses, creating a 200GB DB. Finally, we use a production
SQL workload from Alibaba Cloud, with a profiled mix of 3:2:5
insert:update:select ratio. The dataset size is also configured to
200GB, with requests issued synchronously.

5.2 Sysbench Results
Overall performance. Figure 5 gives Sysbench overall perfor-
mance results, with growing CN-side processing concurrency. As
expected, PilotDB’s fast remote PM helps most with more write-
intensive workloads: with WO, the PilotDB throughput reaches
97.0% of MySQL-ideal, with at least a 1.53× improvement over the
other three baselines.
1We gave up test deployment of Hotpot after spending substantial effort and submitted
an issue summarizing our encountered problems [10].
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Figure 5: Sysbench overall performance w. 200GB DB

Table 1: LegoPM / PilotDB performance and PM bandwidth
usage w. 200GB DB (64-thread)

Thpt (K-QPS) PM Read (GB/s) PMWrite (GB/s)
RO 153.31 / 153.72 0.63 / 0.63 0.20 / 0.20
RW 100.17 / 126.62 1.16 / 1.10 0.76 / 0.45
WO 90.95 / 145.36 1.05 / 1.00 1.55 / 0.69

Meanwhile, even with the more read-heavy test cases, PilotDB
still outperforms the other memory disaggregation solutions. In
particular, it achieves 90.2% of the MySQL-ideal throughput with
RO, where it does not benefit from PM’s non-volatile nature. With
RW, PilotDB’s advantage becomes more evident, especially when
request concurrency increases.

Finally, the latency results correspond well with the throughput
ones, with PilotDB offering very similar latency to that of MySQL-
ideal, despite the latter’s luxurious setup, with large DRAM LBP
and local PM.
PM bandwidth consumption reduction. Table 1 gives more
details from the above test on PM disaggregation, by listing through-
put alongside PM bandwidth consumption for the 64-thread runs.
It shows that PilotDB, while delivering 26.4% and 59.8% higher
throughput over LegoPM, reduces remote PM write bandwidth by
40.8% and 55.5%, for both RW and WO workloads, respectively. As
expected, PilotDB does not bring significant PM read bandwidth sav-
ings. Note that the read-onlyworkload (RO) still has PMwrite traffic,
due to page registration triggered by RBP misses (Section 4.1).
Remote CPU involvement reduction. Next, we examine the
PMN CPU cycle consumption in PM disaggregation. Here PilotDB
is tested against two baselines: LegoPM and PilotDB-RPC, a version
of PilotDB with one-sided RDMA replaced by our optimized rRPC
(performing similarly to X-RDMA [44]).

Figure 6 plots the impact on the Sysbench throughputwith its RW
and WO workloads, when we vary the number of cores allocated,
out of the total 26 available on the PMN. PilotDB-RPC has a slightly
lower peak throughput than PilotDB, but requires 16 cores to do
so, for both RW and WO. LegoPM reaches its peak performance
with fewer cores (around 8), though the peak itself is considerably
lower, as shown in Figure 5. Still, it consumes much more PMN CPU
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Figure 6: Impact of PMN core allocation w. 200GB DB
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resources than PilotDB, as its direct remote page write would still
involve RPC for the PMN to read the page with atomicity guarantee.

With its aggressive use of one-sided RDMA, PilotDB offers high
throughput with much lower CPU consumption, saturating at only
one core for both RW andWO. With its log-only PM writes, PilotDB
also avoids the aforementioned remote page write problem suffered
by LegoPM. Given the large PM capacity per node, such low PMN
CPU consumptionmakes PilotDB powerful, as a PMN couldmanage
an enormous disaggregated PM space without its CPUs becoming
a bottleneck.

Please note that we do not consider the PMN cores in setting
up MySQL-ideal (Figure 5), so this baseline did use fewer cores
overall. To be fair, we replicate the above MySQL-ideal experiments
with 1 extra core (sufficient for PilotDB according to results here).
This brings an up to 4% throughput boost across three Sysbench
workloads, not significant enough to alter the earlier conclusions.
Breakdown analysis. We then check the impact of PilotDB’s
individual optimizations, such as data placement, log organization,
and the log-pull mechanism. The first system (“LegoPM”) moves
WAL persistence from shared storage and hot pages from local
DRAM to remote PMs, flushing both log entries and dirty pages via
network. The latter three are variants of PilotDB, with optimizations
incrementally added. “Log-offload” adapts LegoPM by only flushing
log entries, and offloading log application to PMNs. “CDLog” further
applies our proposed, CN-driven log organization. Finally, “PilotDB
(w. log-pull)” is the complete PilotDB, fully exploiting one-sided
RDMA with log-pull enabled. Figure 7 gives the results.
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Table 2: Remote PM page read latency

Latency (𝜇𝑠) Log-offload CDLog PilotDB (w. log-pull)
Median 178 23 15
Average 227 25 16
P99 872 48 30

Table 3: RBP stale read ratio w. 200GB DB (WO, 64-thread)

PilotDB-RPC PilotDB
Stale ratio 2.2‰ 2.5‰

Thpt (K-QPS) 16.35 144.55

Across workloads, “Log-offload” shows that simply offloading
log application degrades performance, as opposed to directly flush-
ing data pages to the PM (LegoPM). With RW and WO, it sees
costly on-demand log application on the query-processing criti-
cal path, plus slow log application when CPU resources are tight.
With PilotDB’s new log organization, “CDLog” recovers the loss
with these workloads, by its fast, light-weight PM-side log applica-
tion, outperforming LegoPM by up to 19.7% and 62.8% for RW and
WO, respectively. The complete PilotDB, “w. log-pull”, outperforms
LegoPM slightly for RO, and by 26.4%/80.0% higher for RW/WO.

To take a deeper look, we summarize the remote PM page read
latency of the above three PilotDB variants in Table 2. Even with
WO, all three PilotDB variants have substantial remote PM reads,
since updating a page requires first loading it to LBP. When the
requested page is up-to-date, “CDLog” and “PilotDB (w. log-pull)”
observe low latency (the “Median” row), since no on-demand log
application is needed. Here the full PilotDB is already superior, due
to its fast reads with one-sided RDMA. In contrast, “Log-offload”
has a median latency significantly higher, due to its resource-heavy
conventional log application that contends for the remote CPU
cycles with the PM-side page serving.

The average and P99 tail latency, meanwhile, are affected by
the worst-case scenario, when the RBP-cached page is found stale.
Here “Log-offload” suffers the most, waiting for its slow log appli-
cation to reach the desired page. CDLog, while also waiting, has
log application accelerated by its CN-driven log organization (with
fast memory copy), resulting in an average/tail latency reduction
from “Log-offload” of around 9/18×. The full PilotDB eliminates
such wait altogether (along with the PMN-side version check) and
pulls the needed log for CN-side update instead, trimming another
36%/60% from the “CDLog” average/tail latency.

Table 3 shows the benefit of log-pull, listing the ratio of RBP
stale reads in a 64-threadWO test. With only 2 PMN cores allocated,
PilotDB sees a slightly higher stale ratio than PilotDB-RPC, while
delivering nearly 10× throughput. Furthermore, the low stale ratio
(2.5‰) confirms the rationale of PilotDB’s optimistic read for saving
PMN CPU consumption.
Data consistency and recovery test. We check the data consis-
tency of our implementation using highly concurrent workloads
and failure injection. We run PilotDB alongside Pstress [42], a data-
base concurrency and recovery testing tool, which generates con-
current workloads to stress PilotDB while logging the initial data
set and all queries executed. We terminate PilotDB in the middle
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Figure 8: Recovery and warm-up behavior

of a test, then reboot it and create a checkpoint to compare with
the Pstress-generated state. We repeated such a test 50 times and
found no inconsistency.

To examine their recovery performance, we run a 64-thread
Sysbench RW with both PilotDB and MySQL-ideal. We inject a
crash at 80t second into the test and reboot the crashed instance
immediately. For PilotDB, we configure two failure cases, crashing
the CN and PMN, denoted as “PilotDB-CN-crash” and “PilotDB-
PMN-crash”, respectively.

Figure 8 plots throughput, showing both the recovery time (time
to resume service) and warm-up time (time to return to pre-crash
throughput). As expected, MySQL-ideal performs the worst, taking
81 seconds to recover states and another 87 seconds to populate its
empty LBP. This is due to its WAL consisting of many committed
transactions not yet applied to storage (local PM in this case), which
requires log scan and reconstructing the in-memory checkpoint. In
addition, with its large yet volatile buffer pool, all pages are lost
and need to be fetched from the PM-based local storage.

In contrast, PilotDB-CN-crash excels with smaller CN footprint,
taking nearly no time to recover and only 35 seconds to warm up.
One reason is that PilotDB persists logs to the remote PM at the
mini-transaction basis. Upon reboot, it just needs to rollback a small
number of unfinished transactions via one-sided RDMA. The other
important factor is its small LBP size.

Similarly, PilotDB-PMN-crash experiences zero recovery time,
here thanks to the three-way log replication. With one PMN down,
the entire database service immediately fails over to another alive
PMN replica (appointing it the primary) and continues to process
client queries. As expected, PilotDB-PMN-crash needs only 11 sec-
onds to recover to its peak throughput, as the RBP pages are not
lost after reboot and can directly serve CNs.

Such results reveal that besides significant performance advan-
tage and dramatically reduced CN-side DRAM requirement, PM-
disaggregation enables speedy recovery and warm-up, both crucial
to performance resilience.
Multi-tenant support. Figure 9 showcases PilotDB’s capability
to serve multiple DB applications with its disaggregated PM layer,
compared with LegoPM. Here each of the 4 PM-equipped Group-1
servers uses one of its CPU sockets for PMN and the other for CN,
forming the first CN pool (CNP1). The second pool (CNP2) is formed
by 8 Group-2 servers, which are in a different rack, connected to the
PMNs via a slower 10Gbps connection. With both systems, each
tenant has a 50GB DB, running Sysbench RW using 16 threads,
with 5GB DRAM LBP on CNP1 and 30GB DRAM on CNP2, plus a
50GB remote PM buffer. Here we adjust LBP provisioning: users



Persistent Memory Disaggregation for Cloud-Native Relational Databases ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

8 16 32
0.0

0.5

1.0

Total number of DB tenants

Sh
ar

in
g/

Ex
cl

us
iv

e 
ra

tio

LegoPM-CNP1 LegoPM-CNP2 PilotDB-CNP1 PilotDB-CNP2
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renting CNs further away from the PMs might be encouraged to
increase their LBP size due to higher cross-rack latency and lower
bandwidth. Both PilotDB and LegoPM turn off log replication in
this experiment.

We test two execution modes: (1) “exclusive”, where a DB tenant
runs individually (with no concurrent workloads), and (2) “sharing”,
where multiple DB instances, evenly distributed across CNP1 and
CNP2, run simultaneously. Figure 9 plots the average per-instance
“sharing” throughput within each CN pool, relative to the respective
“exclusive” baseline, while increasing the total number of tenants.

With 8 or 16 tenants, both LegoPM and PilotDB in sharing mode
perform well (achieving around 90% of exclusive throughput) due
to sufficient PMN resources. With 32 tenants, LegoPM instances
in CNP1 (LegoPM-CNP1) decline to around half of the exclusive
performance, seeing intense contention for PMN CPU. LegoPM-
CNP2 degrades even more, constrained by the network bottleneck.
PilotDB, in contrast, shows a very slight performance drop serving
32 tenants. This implies that with PilotDB’s bandwidth- and PM-
side CPU-conserving design, a disaggregated PM layer is promising
in supporting more concurrent DB instances.
Impacts of DB size and PM ratio. Finally, we also assess the
impact of DB size and PM ratio by fixing the memory allocation
but expanding the database, producing a decline in PM ratios. With
400GB DB and 100GB PM buffer, PilotDB’s throughput reaches
88.5%, 92.3%, and 94.5% of “MySQL-ideal” using 100GB local DRAM
buffer for RO, RW, and WO workloads, respectively. In contrast
to 90.1%, 94.4%, and 97.0% with 200GB DB and 100GB PM buffer,
the performance is inferior due to the reduced LBP hit ratio. Fur-
thermore, when expanding the DB size to 1 TB, disk I/O becomes
a bottleneck. Still, PilotDB’s throughput reaches 86.9%, 89.1%, and
91.5% of “MySQL-ideal” with the three workloads. To conclude, with
significantly reduced PM ratios, PilotDB achieves slightly worse
but still comparable performance as the best-performing baseline,
thanks to its fast RDMA-friendly page access path.

5.3 Other Workloads
TPC-C results. Figure 10 shows the TPC-C throughput and P99
latency results, giving similar trends as with Sysbench. With LBP
limited at 5% of the 200GB DB size and a 100GB PM RBP, PilotDB
produces throughput only 10.6% lower than MySQL-ideal in the
worst case. Meanwhile, it achieves a throughput 35-46% higher
than LegoBase, and 27-29% higher than LegoPM. Its P99 tail latency,
on the other hand, is up to 64% higher than MySQL-ideal when
fewer threads are used, as its distributed operations bring higher
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Figure 11: Throughput timeline of production workload

lock contention on the CN. The tail latency difference appears to
diminish as thread concurrency grows.
Production workload. Finally we run a trading service workload
from the production environment of Alibaba Cloud. It is memory-
intensive and contains a significant portion of write transactions.
Figure 11 plots the throughput timelines of MySQL-ideal and Pi-
lotDB. Despite the inevitable cross-node traffic between the CN and
PMNs, PilotDB still nearly matches MySQL-ideal’s performance
(98.0% on average), without bringing larger throughput variance.
This demonstrates that e-commerce applications could indeed run
at much lower DRAM configurations when supported by a disag-
gregated PM layer.

5.4 Cost Comparison
With our performance results, here we assess the cost-effectiveness
of PMdisaggregation for cloud-native DBs by examining the request
processing throughput per $ investment.

We compare the three setups, MySQL-ideal, LegoBase, and Pi-
lotDB. Table 4 lists their resource usage for Sysbench RW and
TPC-C, both with 100GB DB size. Aside from the familiar LBP/RBP
configurations, we use the minimum remote memory node core
counts that achieve each system’s peak throughput (with CN core
count fixed at 16). For example, MySQL-ideal still needs the "H"
CPUs as it uses a local PM for log and data storage, while LegoBase
can adopt the "L" CPUs for both its CN and remote memory node
(saturating at 8 cores on the latter for Sysbench and 16 for TPC-C).
PilotDB, in contrast, requires "L" CPUs for CN and "H" CPUs for
PMN, but saturates at only 1 PMN core for both workloads. With
the unit prices listed, we derive the per-resource costs, which sum
up the total cost and produce the throughput per $.

With both workloads, PilotDB outperforms the other two sys-
tems in terms of cost-effectiveness by at least 55.9%. In particular,
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Table 4: Cost analysis, with hardware model/price give on the left (detailed data for Sysbench omitted, CDW-G [41] as of
02/2023)

Hardware Unit
Price Resource MySQL-ideal (100D-0) LegoBase (10D-100D) PilotDB (10D-100P)

Usage Cost Usage Cost Usage Cost

Intel Platinum 8260 CPU
PM-compatible (H) $6880.0

TPC-C

CN CPU H-16 $2293.3 L-16 $929.1 L-16 $929.1
MN CPU 0 $0 L-16 $929.1 H-2 $286.7

Intel Xeon E5-2660 CPU
non-PM-compatible (L) $1626.0 DRAM 100GB $685.2 110GB $753.7 10GB $68.5

PM 100GB $327.3 0GB $0 100GB $327.3
Samsung DDR4

(128GB) $877.0 Total Cost - $3305.8 - $2611.9 - $1611.6
Thpt (TpmC) 119.4 K - 95.2 K - 112.4 K -

Intel Optane DCPMM
(128GB) $419.0 Thpt/$ (TpmC/$) - 36.1 - 36.4 - 69.7

Sysbench Thpt/$ (QPS/$) - 41.8 - 59.2 - 92.3
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Figure 12: PilotDB vs. public cloud-native DBs (200GB DB)

with Sysbench, it more than doubles the throughput per $ invest-
ment of MySQL-ideal. Compared to DRAM-disaggregation with
LegoBase (with the same amount of remote memory, but in DRAM),
PilotDB improves both absolute performance and cost-effectiveness.

5.5 Comparison with Disaggregated
Cloud-Native DBs

We also compare PilotDB with two popular cloud-native relational
DBs on the market: Amazon’s Aurora [5] and Alibaba’s PolarDB [4],
both with storage disaggregation. Given the black-box nature of
their hardware configuration, we make our best effort to align
testbed resources. When in doubt, we make conservative config-
urations that are biased against PilotDB. CPU remains the most
important resource and is straightforward to align in quantity: we
allocate 16 cores to each system, and use MySQL’s built-in MD5
function to verify that the three setups have similar CPU capabil-
ities. Furthermore, with their resource provisioning policy, such
CPU allocation comes with 128GB DRAM for both Aurora and Po-
larDB. This way, PilotDB’s 10D/100P LBP/RBP configuration has no
capacity or speed advantage. We compare the peak throughput of
the Sysbench workloads between the three system configurations,
using a 200GB database.

As seen in Figure 12, PilotDB brings a 1.02×, 1.05×, and 1.38×
peak throughput improvement over PolarDB and 1.58×, 1.92×, and
2.72× over Aurora in Sysbench RO, RW, and WO workloads, respec-
tively. Overall, PolarDB achieves significantly higher throughput
than Aurora (close to the MySQL-ideal baseline above), where the
working set of both systems can be cached in its 128GB local buffer,
despite the use of disaggregated storage. We observed from the
AWS performance monitor that Aurora has a memory hit ratio of

99% and almost no storage I/O accesses, while its CPU utilization
is nearly 100%. We suspect Aurora’s lower performance is due to
its compute module (i.e., the SQL/TXN engine) design.

Though replacing the bulk of DRAM allocation with disaggre-
gated PM, for read-dominant workloads like RO and RW, PilotDB
still matches or slightly outperforms PolarDB, due to its highly-
optimized read paths driven by one-sided RDMA and CN-side ver-
sion checks. Finally, when it comes to write-only (WO), PilotDB
shows a considerable advantage over PolarDB, thanks to its fast
data persistence.

6 DISCUSSION: APPLICABILITY BEYOND
OPTANE

Though our evaluation focuses on the Optane PM, PilotDB’s appli-
cation scope is much wider and is unlikely to be impacted by the
discontinuation of the 3D XPoint [29] product. First, the NVM busi-
ness will continue, as multiple companies are developing products
based on different technologies such as STT-MRAM [8], FRAM [36],
Nano-RAM [56], and ReRAM [2]. Second, as a promising alterna-
tive, the emerging CXL-based storage/memory approximates PM by
providing DRAM with flash-based durability [22, 61]. For instance,
KIOXIA’s XL-FLASH with the CXL.mem interface [22] is a fast SSD
with 64-byte random access and persistence. With products like
XL-FLASH, PilotDB will retain its relevance as they provide what
Optane offers: fine-grained access granularity, ultra-low latency
RDMA compatibility, fast persistence, and large capacity. Finally,
PilotDB’s target problems (such as limited bandwidth and high
CPU loads for data durability and availability) likely persist across
different NVM technologies, hence its design will remain valid.

Regarding generalization, PilotDB is a PM-disaggregation solu-
tion customized for cloud-native relational DBs and demonstrated
on MySQL, one of the most used DB implementation. DBs such as
PostgreSQL [27] can be easily adapted to use PilotDB techniques
in a similar way. It is also possible to encapsulate PilotDB’s PMNs
into a general-purpose disaggregated PM layer with proper APIs.
Finally, PilotDB has the potential to offer cost-effective caching or
logging functionalities for various data-intensive applications that
assume page-based memory/storage organization [1, 28, 66].

7 RELATEDWORK
Below we summarize related work not discussed in Section 2 and
note their relationship with PilotDB.
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PM for relational DB. Recent advances in commodity PM trig-
gered a large body of initial proposals to incorporate it into rela-
tional DBs for performance, sometimeswith architecture redesign [6,
9, 30, 34, 37, 40, 46, 51, 52, 64, 67, 68, 77].

A group of the above studies uses PM as an extension to DRAM
or a faster SSD, harvesting the PM’s byte-addressable performance
and capacity benefits. For instance, the SAP HANA in-memory
database system [6] partitions and places data on DRAM and PM.
FOEDUS [37] leverages a two-tier DRAM-PM approach that exe-
cutes transactions entirely on DRAM, while persisting states on PM
asynchronously. Hymem [64] and Spitfire [77] adopt a three-tier
DRAM-PM-SSD hierarchy, focusing primarily on managing data
migrations across tiers. Other three-tier systems like Exadata [51]
and HiEngine [46] attach PM to either the storage server or the
compute node for caching hot data or log entries. Most of these
design targets a single machine, while all of them only consider PM
as locally attached resource. PilotDB also adopts the cost-effective
three-tier DRAM-PM-SSD hierarchy, but designs it for having fully
disaggregated resource layers.

Another group of work uses PM to improve database reliability.
For example, NV-Logging [30] and Distributed-Logging [67] build
concurrent logging on PM. SOFORT [52] proposes a copy-on-write
architecture for PM storage, which enables direct data modification
on PM and almost instantaneous restart after a crash. Zen [40] elim-
inates logging by reserving fields for data tuples in PM to indicate
their persistence status. WBL [9] abandons the traditional write-
ahead logging and instead introduces a protocol that first persists
data into PM, then records light-weight log entries without the
before- and after-images of data. However, these systems are again
designed for single-machine execution or suffer high overhead in
distributed environments [9, 68]. In contrast, PilotDB is designed
specifically for scalable cloud-native services, retaining existing
relational DB workflow while offering fast, light-weight PM-side
operations through the heavy adoption of one-sided RDMA.
PM in distributed or disaggregated environments. A few re-
lated studies combine PM and RDMA to build fast and persistent
remote storage or memory systems [43, 45, 60, 63, 70, 76]. Examples
include Octopus [43] and Orion [70], both distributed, PM-based
file systems. They unfortunately do not meet the demands of cloud-
native databases due to the file system abstraction adding excessive
performance overhead in accessing remote PM [60]. In addition,
Mojim [76] offers a primary-backup replicated storage system with
a memory-based abstraction. To replace the bulk SSD/HDD-based
storage with such PM-based solutions for cloud-native DBs, how-
ever, appears to be beyond the budget of most users.

Hotpot [60] extends Mojim’s design to distributed shared persis-
tent memory, unifying data caching and replication into a single
layer. However, its design targets symmetric distributed PM sys-
tems, where each machine has its own PM device, in contrast to
elastically provisioned resources favored by cloud-native databases.
Second, they require full replication of data structures in local mem-
ory, which is less affordable for cloud-native DBs due to their large
data volume. Third, both Mojim and Hotpot offer a transparent
distributed PM abstraction to upper-level applications in the Linux
kernel. In exchange for such transparency, kernel-based remote
memory systems tend to have high overheads, despite the use of
RDMA [73, 74].

Recent systems do depart from the symmetric PM architecture
and follow the resource disaggregation trend [58] by decoupling
compute nodes from the PM layer [45, 63, 72]. Besides the previously
discussed AsymNVM [45] and pDPM [63], FORD [72] optimizes
distributed transaction processing with the one-sided RDMA and
batching techniques [33].

The primary distinctions between PilotDB and the above sys-
tems are (1) PilotDB targets a disaggregated three-tier DB design
prompted by the overall cost-effectiveness offered by combining
multiple features of PM: capacity, performance, and persistence;
(2) instead of offering general disaggregated PM, PilotDB is de-
signed for cloud-native databases and incorporates a substantial
amount of DB-specific optimizations, to fully unleash the potential
of PM for cloud DB services.
Other work. Our CDLog design is inspired by existing log offload-
ing approaches such as “log is the database” [65, 68]. However, the
PilotDB PMNs work very differently, designed to possess a CPU-
light data-plane. They perform easy and fast log application and
replication, both out of the query critical paths, with PM-buffered
pages retrieved, checked, and updated single-handedly by the com-
pute nodes. Finally, PilotDB has benefited from the design advice
by a recent comprehensive and systematic study [69] of remote
PM characteristics. For example, we adopted the suggested RDMA
batching optimization, which combines the remote persistence and
writes operations into one RDMA request to reduce latency.

8 CONCLUSION
Merely five years ago, a SIGMOD ’18 paper [64] investigating single-
node DRAM-PM-SSD architecture for databases (using emulated
PM in experiments) concurred with the conventional wisdom that
NVM-DIMMs are “not fast enough to replace main memory and
they are not cheap enough to replace disks, and they are not cheap
enough to replace flash.” [49]. While we also agree that PM is not
going to replace main memory or SSD/HDD storage, this study has
demonstrated that today’s commodity PM hardware is large enough
to help reduce memory need (hence facilitating the utilization of
fragmented CPU core resources), and fast enough to be used for on-
critical-path data persistence. With hardware disaggregation, PM
resources can be consolidated into a PM layer that serves concurrent
database instances with diverse access patterns and load levels,
enhancing the overall cost-effectiveness and elasticity of cloud-
native database services.
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