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Abstract-Flash-based SSDs are usually equipped with an on­
board cache to further improve system performance by smooth­
ing the gap between the upper-level applications and lower-level
flash chips. Since modern SSDs are usually composed of multiple
flash chips, and the load of flash chips are significantly different,
it is very meaningful to be aware of the chip load condition when
designing a cache replacement algorithm. Nevertheless, existing
cache replacement algorithms only consider to reduce the cache
miss ratio so as to reduce the I/O requests to the underlying
flash memory as much as possible, none of them considers the
load condition of flash chips. In this paper, we propose a Load­
aware Cache Replacement algorithm, called LCR, to improve
the performance of flash-based SSDs. The basic idea is to give
a higher priority to cache the blocks on overloaded flash chips.
We evaluate the performance of our scheme by using a trace­
driven simulator with multiple real-world workloads, and results
show that compared with the most common algorithm LRU and
the state-of-the-art algorithm GCaR, LCR reduces the average
response time by as much as 39.2% and 12.3%, respectively

Index Terms-Flash; SSD; Cache Replacement

1. INTRODUCTION

NAND-flash based Solid-State Disks (SSDs) show superior
performance over hard disks in lower access latency, smaller
size, lower energy consumption, no noise, and shock resistance
[6]. In recent years, SSDs have received a great deal of
attention from industry and academia. Besides the deployment
on personal computers and mobile devices, they also have
been widely deployed in the high performance computing and
enterprise environments [2, 7]. Moreover, with the drop of its
per-bit cost, SSDs will be more widely deployed.

In order to reduce the access latency, SSDs usually adopt an
on-board device cache, such as DRAM or SDRAM, which is
used for smoothing user I/O requests traffic [22]. The user I/O
requests from upper-level file systems can be kept in the cache
for as long time as possible before being flushed to the flash
chips. In other words, the on-board cache plays an important
role in offering a better I/O performance since a majority of
requests can be serviced at the cache speed [20]. However,
the effectiveness of the cache mechanism relies on the cache
replacement policy [10].

Due to its simple and effective exploitation of temporal
locality, the Least Recently Used (LRU) is the most widely
used cache replacement algorithm [4]. Over the years, a large
number of cache replacement algorithms have been proposed,
such as 2Q [14], MQ [26], LIRS [12], ARC [18], DULO [11],
etc. These traditional cache replacement algorithms have been
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optimized in various ways for operating systems, but they are
customized for disk-based secondary storage. Unfortunately,
flash-based SSDs exhibit unique characteristics compared to
Hard Disk Drives (HDDs), such as asymmetric read and
write latencies [13], out-of-place update policy, and Garbage
Collection (GC) to reclaim invalid pages and to create free
space for incoming write requests. Due to the huge overhead
of GC process [25] and the evidently unbalanced distribution
of I/O requests on different flash chips, it is necessary to revisit
various cache replacement policies for disk-based storage, so
as to optimize them for flash-based SSDs.

There are also multiple studies on cache replacement al­
gorithms for flash-based SSDs, and they optimize the cache
performance from different perspectives. Firstly, CFLRU [19]
and LRU-WSR [15] are designed to reduce the average
replacement cost by making an effort to minimize the number
of write requests from upper-level file system to the backend
devices. Secondly, GC-ARM [9] and PUD-LRU [8] aim for
improving the GC efficiency by considering how to reorganize
data blocks so as to improve the process of flushing data to
flash chips. Finally, GCaR [24], which is aimed at maximally
reducing the contentions between the user I/O operations and
the GC-induced I/O operations. The basic idea of the GCaR
is giving a higher priority to cache the data blocks belonging
to the flash chips that are currently doing GC.

However, none of existing works take the load of flash
chips coming from real-time workloads into consideration,
making them ineffective in reducing the expensive I/O traffic to
overloaded flash chips. We find that alleviating the contention
and interference between the flushed I/O requests and the total
I/O operations on overloaded chips will greatly reduce both
the tail and average response time of user I/O requests.

In this paper, we propose a Load-aware Cache Replacement
algorithm, named LCR, to improve the performance of flash­
based SSDs. The basic idea is to give a higher priority to cache
the data blocks on the flash chips that are in overloaded state.
The main contributions of this paper are as follows.

• We propose a Load-aware Cache Replacement algorithm,
named LCR, which selects the victim data block in the
cache line according to the load levels on flash chips
and assigns a higher priority to cache the data blocks on
overloaded chips.

• We propose a two-level caching policy by dividing the
LRU list into two regions, working region and destaging



Fig. 2. The load balance rates of different realistic traces.

TABLE I
THE PARAMETERS AND OPERATIONS OF SSD
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Operations Access Time Operation Unit Typical Size
Read 25/1-s Page 4KB
Write 200/1-s Page 4KB
Erase 2ms Block 256KB

this chip and postpone the I/O requests to process. In practical
systems, the workloads on different chips may be seriously
skewed, which is validated in many application scenarios and
also in our evaluations as shown in Fig. 2.

The workload on a SSD comes from two sources, the I/O
requests from application requests and the ones induced by
Garbage Collection (GC). There are three types of workloads
on a chip, i.e., read, write and erase. It is well-known that
SSDs have asymmetric operation latencies. The read and
write operations are performed in pages, however, the erase
operation is performed in blocks. Due to the limitation of the
erase-before-write updating policy, read is about several times
faster than write, and especially, 2-3 orders of magnitude faster
than erase. One particular example of the timing parameters
of SSDs is shown in Table I [23].

To validate the unbalanced workloads on flash chips. We
conduct evaluations on the trace-driven simulator with four
realistic traces. Before the execution of our evaluations, the
SSD is filled with data such that GC may be triggered during
the execution of the traces. We define the load balance rate
as the ratio of the maximum load on a flash chip to the
average load on all flash chips [21]. The larger the load
balance rate is, the more severe the workloads on different
flash chips are unbalanced. Fig. 2 shows the load balance rate
of different realistic traces. We can see that there are almost
40% of the cases in which the balance rates are larger than
10, which means that the load on the most overloaded chip is
more than ten times heavier than average. Moreover, previous
studies also have similar findings [16, 17]. All of these studies
have revealed that the load conditions on the flash chips are
extremely unbalanced and it has a significant impact on the
system performance. Although there are many algorithms for
load balance on flash-based SSDs, they are only aware of
the I/O waiting queue of requests from application layer and
balance users' requests. They don't aware of the I/Os comes
from the management of flash chips, such as garbage collection

region. The working region caches the recently accessed
data blocks, which are the main source of cache hits.
The destaging region keeps the data blocks which are
candidates for eviction.

• We propose a scheme to trade off the miss ratio and
the miss penalty by narrowing down the range of victim
blocks to be selected in the destaging region. Meanwhile,
it can also reduce the computation cost to monitor the
workloads on all flash chips.

• We conduct extensive trace-driven performance evalua­
tions based on Disksim simulator with SSD extension.
The results show that LCR reduces the average response
time over the most common and most recent algorithms,
LRU and GCaR, by as much as 39.2% and 12.3%,
respectively.

The rest of this paper is organized as follows. We introduce
the background and motivation of our work in Section II. We
then present the design details of LCR and its performance
evaluation in Section ill and Section IV, respectively. Finally,
we conclude this paper in Section V.

Fig. 1. Logical architecture of a modem SSD.

An SSD is usually composed of multiple flash chips and
data are distributed to all chips. So user's I/O requests are
distributed on different chips, and they can be executed in
parallel. Due to the spatial locality and temporal locality, it
is common that applications frequently access the same flash
chips at a short time interval [5]. In addition, if a flash chip is
frequently accessed, the number of free blocks on the chip may
become lower than a predetermined threshold, which triggers
frequent GC operations. As a result, if a chip is overloaded, it
will induce long waiting time for the I/O requests queued in
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II. BACKGROUND AND MOTIVATION

In this section, we first introduce some background about
SSDs, then introduce the state-of-the-art cache replacement
schemes for SSDs, and finally motivate this work by dis­
cussing how we can take unbalanced loads on different flash
chips into consideration in the design of cache replacement
algorithms.

A. Flash-based SSDs
As illustrated in Fig. 1 [24], a typical SSD is mainly

made up of three components, Host Interface Logic (HlL),
SSD controller and NAND flash chips. HlL is responsible for
translating host system requests to NAND flash aware requests
and vice versa. SSD controller takes charge of executing read,
write and erase operations to NAND flash chips according to
the requests from HlL.



and wear leveling, etc. As a result, the unbalanced load of
flash chips remains, especially when garbage collection and
wear leveling are performed.

B. The Analysis of Factors Affecting Cache Efficiency
There are many kinds of storage devices, such as RAM,

NVM, disk and flash, which show different performance
characteristics. The cache mechanism plays an important role
in smoothing performance gap between two neighboring layers
of the storage devices. Wu et al. [24] proposed a model to
analyze the cache efficiency. In details, the Average Memory
Access Time (AMAT) is regarded as the most important
standard to measure the efficiency of the cache management.
AMAT is formulated as follows.

AMAT = HiCTime +Miss_Rate x Miss_Penalty. (1)

As we can see, the AMAT depends on three factors,
HiCflme, Miss_Rate and Miss_Penalty. The HiCTzme of
internal cache built-in SSDs is consistent. The proposed opti­
mization of cache management makes an effort to reduce the
Miss_Rate by exploiting access locality to delay the process
of flushing upper-level user I/O requests to the low-level flash
chips. For Miss_Penalty, they assume that the access time of
flash chips are almost the same, meaning that the Miss_Penalty
is a constant. However, the assumption is beneficial to HDDs,
but it may not be applicable to SSDs. From aforementioned
discussion, we know that the delay of accessing a flash chip
is not a constant and depends on its load level. So the
Miss_Penalty of accessing different chips must be different,
and it may vary greatly under seriously skewed workload.

The existing cache replacement algorithms do not take the
load levels on flash chips into consideration, e.g., the LRU
scheme always evicts the tail data blocks in the LRU list.
But if we evict a data block near the tail which is on a
chip with lighter load, we may keep almost the same cache
miss ratio, but the Miss_Penalty will become smaller. So the
cache efficiency will be improved. Therefore, both Miss_Rate
and Miss_Penalty should be taken into consideration when
designing cache replacement algorithms for flash-based SSDs.

C. Cache Replacement Policies for Flash-based SSDs
In recent years, many cache replacement algorithms have

been proposed to improve the efficiency of ca che management
for SSDs. We will present two cache replacement algorithms
for SSDs, which are most relevant to this study.

Based on the asymmetric read and write costs in delay and
energy consumption of flash-based SSDs, a Clean First LRU
(CFLRU) cache replacement policy was proposed in [19].
CFLRU divides the LRU list into a working region and a clean­
first region. It evicts clean pages preferentially in the clean­
first region until the number of pages that hit in the working
region reaches a suitable level. In other words, CFLRU reduces
the number of costly write and potential erase operations by
trading off the number of reads as long as the degradation of
cache hit ratio does not degrade the performance.

As revealed by previous studies, there are serious contention
for the flash resources and the severe mutually adversary
interference between the user I/O requests and GC-induced
I/O requests in SSDs. In order to address this important
performance issue in flash-based storage systems, a Garbage
Collection aware Replacement policy (GCaR) was proposed
in [24]. Different from the traditional cache management
schemes, GCaR not only exploits the locality of workloads,
but also takes the Miss_Penalty as an important design factor
in the cache replacement. The basic idea is to give higher
priority to cache the data blocks belonging to the flash chips
that are currently doing GC. This substantially lessens the
contentions between the user I/O operations and the GC­
induced I/O operations.

D. Motivation
For the on-board cache management within the flash-based

SSDs, the access times depend on the workload on flash
chips. However, existing cache replacement algorithms, such
as CFLRU, are not aware of the variance of Miss_Penalty.
They assume that the access times to low-level flash chips
are consistent. The GCaR algorithm considers the GC state of
flash chips, which is orthogonal and can be easily incorporated
into existing cache management algorithms. But it becomes
effective only when GC operations occur. If the flash chips,
where the cached data blocks are resident, are all not in the
GC state, the GCaR degrades to the normal cache replacement
policies. None of them takes the length of I/O queue within
flash chips into consideration.

As revealed by aforementioned discussion, the Miss_Penalty
is very related to the length of queues on chips and it has
a significant impact on the system performance, which is
also validate in our experiments, shown in Fig. 5 in Section
IV. It motivates us to propose a chip-level load-aware cache
replacement algorithm to improve the efficiency of equipped
cache within flash-based SSDs. Its basic idea is to give a
higher priority to cache the blocks on the flash chips that are
in overloaded state. When replacing a data block in the cache
line, we will check whether the data block belonging to the
flash chip that is in overloaded state or not. If so, the data
block will be kept in the cache for a longer time until the chip
becomes light loaded. Otherwise, it will be replaced as usual.
We present the details of our algorithm in Section m.

III. LOAD-AWARE CACHE REPLACEMENT ALGORITHM

In this section, we first present the main idea of LCR, then
describe its implementation details, and finally show its read
and write flows.

A. The Main Idea of LCR

Different from traditional cache management policies for
flash-based SSDs, LCR not only exploits the locality of work­
loads, but also takes the Miss_Penalty into consideration. From
Fig. 2, we can find that the Miss_Penalty to an overloaded
flash chip may be orders of magnitude larger than flash chips
with light load. We should assign a higher priority to the data
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B. Implementation Details of LCR

I) Definition ofload level L chip : As discussed before, the
load level is decided by three basic operations, read, write and
erase. In order to quantify the load levels of flash chips, we
formulate the queue delay of user I/O requests and GC-induced
I/Os as the load level of flash chips, named L chip'

L chip = N R *Tread + Nw *Twrite + P *T gc , (2)

Fig. 3. Overall architecture of LCR scheme.
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where N R and N w denote the number of read and write
requests in a queue, respectively, Tread and T write denote
the access latencies of processing a read request and a write
request, respectively. The value of P is either 1 or 0, which
indicates whether the flash chip is in GC state or not. Tgc
denotes the overhead of GC operation, which includes the
time of moving valid pages and erasing the victim block.
Realistically P*Tgc should be the remaining time to complete
GC. However, it is difficult to be captured. Therefore we
simply use the definition of Tgc in the following experiments.

2) Data structures for LCR: To realize the cache re­
placement scheme, several data structures along with proper
algorithms are proposed. To minimize the time to choose the
victim data block in cache line, we use a data structure as
shown in Fig. 4. The data block nodes are stored in a LRU
list, and LCR divides the LRU list into two regions, working
region and destaging region. The working region consists of
the recently used data blocks and most of the cache hits happen
in this region. The destaging region consists of data blocks
which are candidates for eviction. The size of the destaging
region is called window size. LCR preferentially selects a clean
data block in the destaging region and evicts it to save flash
write cost. If there are no clean data blocks in the destaging
region, LCR evicts a dirty block which updated copy is stored
in a chip with minimal L chip and flush it to the flash memory.

Fig. 4 shows an example of the LCR scheme. All data
blocks are not clean in the destaging region, with LRU scheme,
the data block D4 at the end of the LRU list should be
evicted from the cache. However, by checking the mapping
information, data block D4 belongs to flash Chip 2 with
Lchip = 20ms, which are larger than all other ones. So LCR
keeps it longer in the cache, and instead evicts data block D6

on the flash chip with minimal L chip to free cache space.
3) Search operation: An I/O request from upper-level file

systems mainly consists of a sector number, data size and
the type of the operation. The logical page number can be
identified by dividing the sector number by the page size,
then LCR searches the corresponding data block node in the
LRU list. Although it is implemented with a sequential search,
the actual cost is not so high since the number of data block
nodes in LRU is small due to the limited size of cache. If the
I/O request is found in the LRU list, which is served in the
cache, the LCR scheme rearranges the LRU list by moving
the data block node to the head of the LRU list. Otherwise,
LCR immediately terminates the search process.

4) Insert operation: When the I/O request is not found in
the cache, a new data block node will be allocated and attached
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blocks on a overloaded chip to keep them in the cache. The
main idea of LCR is as follows.

• When there is no enough free space for the I/O requests
in the cache, we will select the victim data blocks on the
chips whose load is minimum.

• We trade off the Miss_Rate and the Miss_Penalty by
adjusting the range of victim blocks. We select victim
blocks in the destaging region only, but not the whole
LRU list. So it not only maintains the similar cache hit
ratio with LRU, but also reduces the computation cost of
measuring load on flash chips.

• The priority of a data block in the cache also changes
dynamically according to the load level on the chip where
it residents. In order to avoid metadata update overhead,
we check the load level on a flash chip only when a data
block needs to be evicted.

We also implement our scheme LCR to evaluate its perfor­
mance, the system structure is depicted in Fig. 3. The upper­
level host system consists of three components, applications,
file system, and host logical interface (HIL). The HIL receives
I/O requests from host system and delivers them into the flash
translation layer (FTL). The on-board cache management will
check whether the requested data is in the cache. They will
be serviced by the on-board cache when the data is in the
cache. Otherwise, they will be handed by FfL to the low­
level flash chips. LCR is composed of two key modules, cache
replacement module and load monitor module. The cache
replacement module will interact with the load monitor module
to determine which data block should be replaced or flushed so
as to reduce the Miss_Penalty. The load monitor module plays
an important role in assessing the real-time load levels on flash
chips to decide which are overloaded or light loaded. In the
following subsections, we will illustrate the implementation
details of LCR.
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Fig. 4. Data structures of LCR.

to the head of the LRU list. The requested data is retrieved
from the flash chips and stored in this node when the request is
a read. If it is from a write request, the data is directly written
into this node without updating the corresponding flash chip
immediately. Although the old data in the flash chip is an
invalid version, the subsequent requests to the same data will
be serviced in the cache. So the invalid version of the data in
the flash chip does not induce to any read error.

5) Replace operation: When the cache is full and there is
no free space for accommodating a new I/O request, the cache
should evict a data block. If the evicted data block is clean, it
will be directly discarded. Otherwise, the evicted data block is
dirty, means that the data block in the cache is different from
the copy in the flash chip. Thus, the victim data block will be
destaged into the low-level flash chips. LCR selects a victim
block by the following rules in order.

• All the data blocks that are clean in destaging region are
taken as candidates and the last one will be selected as a
victim block according to the LRU algorithm. This victim
bock with clean state is an optimal selection since it will
not cause any flash write cost.

• Considering the latency of destaging the data block into
the flash chips, the data block on the flash chips with
minimal Lchip will be selected when there is no clean
data block in the destaging region.

In order to reduce the computational cost of L chip for flash
chips, LCR searches victim blocks within the destaging region
only. The process of selecting a victim block is also presented
in Alg. 1.

C. The Read and Write Flow with LCR
Cache plays an important role in smoothing the gap be­

tween the upper-level applications and lower-level flash chips.
Traditional cache replacement schemes are usually aimed for
reducing the miss ratio of the cache by exploiting workload
locality. They assume that the Miss_Penalty is a constant.
However, for flash-based SSDs with different levels of load,
the Miss_Penalty of accessing the missed data on flash chips
with heavy load is evidently larger than that of accessing
flash chips with light load. Thus, the cache performance
should not be simply evaluated by the hit ratio or miss ratio.

Algorithm 1 Select Victim Block
Input:

1: LRU_List
Output:

2: V ictimBlock
3: procedure SELECT_VICTIM_BLOCK(LRU_List)
4: x+- 1
5: MinLchip +- 00

6: CurrentBlock +- GetTailNode(LRU_List)
7: while x <= WindowSize do
8: x +- x + 1
9: if CurrentBlock is Clean then

10: return CurrentBlock
11: else if CurrentBlock.Lchip < MinLchip then
12: MinLchip +- CurrentBlock.Lchip
13: VictimBlock +- CurrentBlock
14: end if
15: CurretBlock +- CurrentBlock.Pre
16: end while
17: return VictimBlock
18: end procedure

Therefore, in the view of flash-based SSDs, both Miss_Rate
and Miss_Penalty are important factors in the LCR scheme.
Moreover, the LCR cache replacement policy works not only
for write requests, but also for read requests.

If LCR receives a write request from file systems, the
LCR scheme will check whether it hits the cache. The data
is overwritten in the cache when the request can be found.
Otherwise, the LCR scheme will check whether there is free
space in cache. If cache is full, LCR will evict data blocks in
the cache to make free space for the newly written data. The
data blocks in the destaging region will be checked, if there
is a clean data block, it will be evicted from the cache and
directly discarded; otherwise, the LCR scheme will select the
victim data block on the flash chips with the minimal Lchip
and flush it to the flash chip. The newly written data will be
kept in the cache and the LRU list is updated. If the cache has
enough free space, a new slot is allocated for the new data,
meanwhile, the LRU list is updated. A detailed description of
the write flow of LCR is shown in Alg. 2.

For a read request, LCR works similarly. If cache hit
happens, LCR immediately returns the cached data to the
host. If LCR cannot find the requested data in the cache, it
will be fetched from a flash chip and the free cache space
availability will be checked. If cache is full, then LCR will
evict data blocks in the cache line to make free space for the
newly fetched data. The data blocks in the destaging region
will be checked, and if there is a clean data block, it will
be evicted from the cache and discarded directly, otherwise,
the LCR scheme will select a victim data block on the flash
chip with minimal Lchip and flush it to the flash chips. The
newly fetched data will be kept in the cache and the LRU
list is updated. If the cache has enough free space, a new slot
is allocated for the newly fetched data block, meanwhile, the
LRU list is updated. After the requested data block is fetched
from the flash to cache, it will be returned to host. A detailed
description of the read flow of LCR is shown in Alg. 3.



Algorithm 2 Write flow in LCR
Input:

1: 110 Write Requests: Wl, W2,'" ,Wi," .
2: procedure LCR_WRITE(Wi)
3: if Wi is in the cache then
4: RemoveHead(LRU_List,Wi)
5: Write_to_Cache(Wi)
6: else if cache is full then
7: Victim +-- SelecCVictim_B1ock(LRU_List)
8: if Victim. Flag is Dirty then
9: Flush_Block_to_Flash(Victim)

10: end if
11: De1ete(LRU_List, Victim)
12: Write_to_Cache(Wi)
13: Update(LRU_List, Wi)
14: else
15: Write_to_Cache(Wi)
16: Update(LRU_List, Wi)
17: end if
18: end procedure

Algorithm 3 Read flow in LCR
Input:

1: 110 Read Requests: Rl, R2,'" ,Ri,'"
2: procedure LCR_READ(~)
3: if Ri is in the cache then
4: RemoveHead(LRU_List,Ri)
5: Return_from_Cache(Ri)
6: else if cache is full then
7: Victim +-- Se1ect_Victim_B1ock(LRU_List)
8: if Victim.Flag is Dirty then
9: Flush_B1ock_to_Flash(Victim)

10: end if
11: Delete(LRU_List, Victim)
12: Return_from_Flash(Ri)
13: Update(LRU_List, Ri)
14: else
15: Return_from_Flash(Ri)
16: Update(LRU_List,~)
17: end if
18: end procedure

IV. PERFORMANCE EVALUATION

In this section, we first introduce the simulation setups
and methodology, then present the evaluation results, and
finally discuss the impact of different parameter settings on
the performance of our scheme LCR.

TABLE II
DISKSIM CONFIGURATION

TABLE ill
STATISTICS OF I/O WORKLOADS

Trace Total # of requests I Write Ratio Avg. Size
web_O 2029945 70.12% 7.64 KB

ts_O 1801734 82.42% 4.64 KB
proLO 4224524 87.52% 19.06 KB
wdev_2 181266 99.89% 4.08 KB

financia12 3698866 17.65% 2.42 KB

A. System Configuration
We employ DiskSim [3] with SSD extension [2] to evaluate

our scheme. This SSD simulator has been widely applied in the
exploration of SSD-based storage systems. In this paper, we
implemented our proposed LCR scheme by integrating it into
the open-source SSD simulator. We modeled an SSD of 64GB,
which is configured with 64 chips. Greedy garbage collection
and dynamic wear leveling are implemented, and the over­
provisioning ratio is set as 15% of the SSD's capacity, which
are default settings for most of SSDs. Other main parameters
of the SSD are listed in Table II.

We use realistic enterprise scale workloads to study the per­
formance impact of different cache replacement policies. The
workloads are chosen from MSR Cambridge traces on servers
at Microsoft Research Cambridge Lab [1], which are also
widely used in previous works to evaluate the performance
of flash-based SSDs [5]. The main workload parameters of
the four traces are summarized in Table m.

In the evaluations, we compare LCR with three algorithms,
LRU, CFLRU and GCaR-CFLRU. Note that LRU is most
common cache replacement algorithm and GCaR-CFLRU can
be regarded as the state-of-the-art algorithm which further im­
proves CFLRU by taking GC interference into consideration.
We use the average response time as the user performance
metric to evaluate the effectiveness of LCR against other
three schemes. We take the LRU scheme as the baseline.
The key characteristics of the CFLRU and GCaR-CFLRU are
summarized below.

• CFLRU [19] is a cache management scheme for flash­
based SSDs. Based on the asymmetric performance of
read and write operations of flash memory. It prefers to
choose a clean data block rather than a dirty one as a
victim since the delay of writing a dirty data block is
significantly longer.

• GCaR-CFLRU [24] aims to substantially reduce the con­
tention and interference between the user I/O operations
and the GC-induced I/O operations. The basic idea is to
give a higher priority to cache the blocks on the flash
chips that are in GC state.

Page Size 4KB
# of pages per block 64
# of blocks per plane 512

# of planes per package 8
Page read latency 0.025ms
Page write latency 0.200ms
Block erase latency 1.500ms

Parameter I Value
B. Performance Results

The response time to a I/O request mainly consists of three
parts, delivering time on data bus (Tb), processing time on
chip (Tc ), and latency of waiting in chip queue (Tw ). Note
that n and Tc are linearly related to the size of a request,
whose transfer rates are determined by hardware property. We
believe that Tw is the only part that can be improved. In our
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Fig. 6. Standard deviation of response times with LRU, CFLRU, GCaR­
CFLRU and LCR

proposed cache replacement scheme LCR, we prefer to choose
a data block on the flash chips with light load to reduce the
factor Tw of the destaging victim data blocks. To evaluate the
performance of various algorithms, we first record the response
time to each I/O request in simulations, then show the average
response time and their standard deviation.

1) The average response time of I/O requests. Fig. 5
shows the average response time. We normalize the result of
LRU as one. We can see that LCR outperforms all existing
schemes, including LRU, CFLRU, and GC-CFLRU. In par­
ticular, for the proLO and wdev_2 traces, LCR reduces the
average response time by up to 23.7% (12.3%) and 11.6%
(10.1%) compared to LRU (GCaR-CFLRU), respectively. We
also measure the ratio of evicted dirty data blocks for the
proLO and wdev_2 traces, and find that the ratio is signifi­
cantly high, nearly more than 95%. Thus, CFLRU does not
work well in this case because there are few clean data blocks
in the clean-first region. And the data volume of the wdev_2
trace is small, so there are few GC operations. As a result,
GCaR-CFLRU shows inefficiency in this trace, but LCR still
shows better performance. For proLO trace with more frequent
GC operations, GCaR-CFLRU shows its advantage in reducing
the average response time by up to 11.4% compared to the
baseline LRU scheme, LCR performs even better than GCaR­
CFLRU, and it reduces the average response time by up to
23.7% compared to LRU. As discussed in Section II, the main
reason is that apart from GC operations, the unbalanced loads
on different flash chips also play an important role in the re-

sponse time to user I/O requests. On the other hand, for web_O
and ts_O traces, there are 76% and 40% replacing ratio of
the clean data blocks. Thus, CFLRU scheme already performs
well, and GCaR-CFLRU does not improve the performance
over CFLRU obviously, the only reason is that the two traces
induce only a very small portion of GC operations. However,
LCR still shows an obvious improvement, with a reduction of
average response time compared to LRU and GCaR-CFLRU
by up to 24.8%(5.2%) and 39.2%(5.9%), respectively. But for
financia12 trace, CFLRU, GC-CFLRU, and LCR have almost
no improvements compared to LRU. The important reason is
that financial trace is mainly read operations, inducing a few
dirty data blocks and a very small portion of GC operations. It
is clear that, by avoiding evicting the data blocks on the chips
with heavy load, LCR scheme are able to significantly reduce
user response time. The results indicate that unbalanced loads
on flash chips have a significant impact on user response time.

2) The standard deviation of response time. Fig. 6 shows
the normalized standard deviation of response times with LRU,
CFLRU, GCaR-CFLRU and LCR. The standard deviation of
response times is used to measure the degree of dispersion on
the response time of I/O requests. The smaller the value, the
better system performance. From Fig. 6, we can see that LCR
also performs the best under all workloads, but for proLO
trace, the reduction of the standard deviation of response
time is not too large, e.g., it is 11.2% (5.1%) compared with
LRU (GCaR-CFLRU), and similar results can be observed for
wdev_2 trace. Meanwhile, for ts_O trace, LCR reduces the
standard deviation of response times by up to 43.9% (5.4%)
over LRU (GCaR-CFLRU), and the web_O trace shows the
same improvement of the system performance. This is because
we take into consideration the unbalanced loads on flash
chips when evicting data blocks. It plays an important role
in smoothing the response time of I/O requests and reducing
the access latency. As a result, LCR can substantially alleviate
the problem of long tail on access latency.

3) The cache hit ratio. We now evaluate the cache hit
ratio of different schemes driven by the four realistic traces.
Fig. 7 shows the cache hit ratios for LRU, CFLRU, GCaR­
CFLRU and LCR. It is clear that all of them have a similar
performance in cache hit ratio. This is because the main
objectives of CFLRU, GCaR-CFLRU and LCR are not to

rJ G nR-CFLRU I'll LCRDLRU ISlCFLR
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improve the cache hit ratio. On the other hand, compared with
the result of the average response time in Fig. 5, we can see
that even with a similar cache hit ratio, the average response
time may vary significantly. The main reason is obvious as the
miss penalty may vary when evicting data blocks belonging to
different flash chips. Actually, the miss penalty on flash chips
with heavy load is much higher than that on light ones. This
phenomenon further implies that cache hit ratio is not the only
factor which imposes on user I/O request response time, and
it is also the reason why improving cache hit ratio should not
be the only design objective of an effective cache scheme for
flash-based SSDs.
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Fig. 8. The average response time and cache hit ratio of LCR with various
window size for realistic traces.

C. The effects of cache Size

We have analyzed the impact of cache size on average
response time and cache hit ratio for all of the five traces. The
results of all traces show the similar trends. Due to the limited
space, we only show the experimental results of wdev_2 trace.
Fig. 9 shows the average response time for each evaluated
schemes by varying the size of the cache from 1MB to 16MB.
In general, the average response time decreases as the cache
size increases. When the cache size is larger than 4MB, the
average response times become stable. Overall, LCR shows
better performance than the rest of the cache management
schemes for all cache sizes. We can see that LCR reduces the
average response times by 11.6%, 10.5%, 9.8% on average
compared with the LRU, CFLRU, and GC-CFLRU schemes
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respectively. It is clear that, by avoiding evicting the cached
data blocks to the overloaded flash chips, the LCR is able to
significantly reduce user response times. The results indicates
that Miss_Penalty can not be ignored.

Fig. 10 shows the cache hit ratio for each cache replacement
algorithms with cache size varying in a large range. As seen,
greater cache size improves the cache hit ratio, when the
cache size is larger than 4MB, the cache hit ratio becomes
stable. Moreover, we can see that LRU, CFLRU, GC-CFLRU
and LCR have a similar performance in cache hit ratio. It is
obvious that except for LRU, the other schemes try to reduce
the miss penalty. As a result, the cache hit ratio does not get
any improvements. On the other hand, the cache hit ratios are
not consistent with the average response times, as shown in
Fig. 9. This phenomenon further implies that cache hit ratio
is not the only factor related to the overall performance.

D. Impact of Window Size

To find the impact of window size on the performance of
LCR, we further show the results by varying the window size
of the destaging region from 1/64, 1/32, ..., to 100% of the
total cache size.

I) Impact on average response time. The results are shown
in Fig. 8, and we can find that for ts_O and web_O traces,
window size shows an evident impact on the performance
of LCR. When the window size varies from 1/64 to 1/2,
that is, when the window size becomes larger, the average
response time becomes smaller. On the one hand, with the
window size being increased, more clean data blocks can
be found in the destaging region. On the other hand, the
probability of choosing a victim data block on flash chips
with light load increases. But the computational cost of L chip
may increase dramatically if the window size grows too large.
For the wdev_2 and proLO traces, the performance of LCR
is stable for different window sizes. So different workloads
have different sensitivity to the window size, which depends
on the essential features of workloads. For each workload,
there should be an optimal setting of window size which
minimizes the average response time. Therefore, ideally, this
window size should be tuned dynamically to adapt to different
workloads and cache size. In the absence of such a dynamic
and adaptive mechanism to tune the window size (which is
our future work), we set the window size to a fixed value in
our current evaluation study.

2) Impact on cache hit ratio. Fig. 8 further shows the
impact of window size on cache hit ratio. We can see that
the cache hit ratio of LCR is not sensitive to the window size
for all workloads. The main reason is that the first objective
of LCR is not to improve the cache hit ratio. Note that the
design of LCR scheme is based on LRU, but we made a trade
off between the Miss_Rate and Miss_Penalty, and this not
only achieves a reduction in average response time, but also
maintains the cache hit ratio similar to LRU. As a result, the
window size has no big impact on the cache hit ratio of LCR.

V. CONCLUSIONS

As revealed by previous studies, the loads on different flash
chips, may be seriously unbalance. The load on a chip comes
from the length of I/O requests queue and GC overhead.
Thus, the Miss_Penalty to a flash chip with heavy load is
longer than that to one with light load. In this paper, we
propose a Load-aware Cache Replacement algorithm, called
LCR, to improve the performance of flash-based SSDs. The
basic idea is to give a higher priority to cache the blocks on
the flash chips with heavy load. This substantially improve the
system performance. We have implemented our scheme with
the SSD extended Disksim simulator and conducted extensive
evaluations. The performance results show that LCR can
evidently reduce the average response time over the existing
cache replacement algorithms.
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