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Summary

Cache management policy plays a key role in offering low latency access to flash-based SSDs.

Most existing solutions including LRU and its successors only focus on improving the cache hit

ratio, but rarely consider to reduce the waiting time of the eviction operation in the page-level

mapping FTLs. As the workloads spreading across internal chips of modern flash-based SSDs are

often highly imbalanced when workloads are write-intensive, the time cost of evicting a dirty page

from cache varies in a wide range. In this paper, we propose a novel eviction-cost-aware cache

management policy, called ECR, to minimize the eviction cost in write-dominant applications.

ECR gives a higher probability to evict a page, which causes the shortest waiting time in the

corresponding chip queue. To achieve this, we introduce a monitor module to keep track of

states of all chip queues, and a multi-LRU list structure to accelerate the selection of a victim

chip and a target page in cache to perform an eviction. Our experimental results show that

ECR can significantly reduce the average response time by as much as 59.55% and 44.84%

compared to LRU and GCaR-CFLRU, respectively, where GCaR-CFLRU is the combination of

state-of-the-art algorithm GCaR and CFLRU.
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1 INTRODUCTION

NAND-flash–based solid-state drives (SSDs) show superior performance over hard disk drives (HDDs), in terms of lower access latency, smaller

size, lower energy consumption, noise avoidance, and shock resistance.1 In recent years, SSDs have received a great deal of attention from industry

and academia. Besides the deployment on personal computers and mobile devices, they also have been widely applied in the high performance

computing and enterprise environments.2 Moreover, with the drop of per-bit cost, SSDs are expected to be used much more widely.3

In order to reduce the access latency of user's I/O requests, SSDs usually adopt an on-board device cache, such as DRAM or SRAM, to smooth

user's I/O requests traffic.4 The user's I/O requests from upper-level applications can be kept in cache for as long time as possible before being

evicted to the flash chips.3 In other words, the on-board cache plays an important role in offering a better I/O performance since a number of

requests can be served in cache.5 However, the effectiveness of a cache mainly relies on its replacement policy due to its limited size.3,6

Least Recently Used (LRU) is the most widely used cache replacement algorithm because of its simple and effective exploitation of temporal

locality.7 Based on LRU, there are some algorithms have been proposed for some particular workloads, such as 2Q,8 LRU-K,9 ARC,10 and

LIRS.11 However, all of them are not so efficient for SSDs. Flash-based SSDs have some unique characteristics compared to HDDs, such as

asymmetric costs of read and write, out-of-place update, garbage collection, and multiple channels connecting to multiple chips. These unique

characteristics make the HDD-oriented replacement algorithms not efficient for SSDs.12 Recently, there are some flash-aware cache replacement

algorithms been proposed. For example, CFLRU13 divides the LRU list into working region and clean-first region. It prefers to evict clean pages

in the clean-first region. LRU-WSR,14 CCF-LRU,15 and AD-LRU16 put efforts to improve CFLRU. GCaR17 gives higher priorities to cache pages

belonging to the flash chips in the GC state to reduce the response delay.

However, existing works are not aware of the states of underlying request queues within flash chips, where queues may have different numbers

of pending requests and the completion time of different requests vary a lot, eg, the GC request usually takes much longer than normal read or
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write requests. Due to this ignorance, thus, they are not aware of the cost of evicting a dirty page from cache. In write-dominant applications,

there are many dirty pages in cache due to frequent write/update in cache. Therefore, it has a very high probability to evict a dirty page from

cache when cache is full. Evicting a dirty page will cause a write back operation, which will be regarded as a normal write request enqueued into

the corresponding chip queue and waits to be scheduled until all the requests prior to it in the queue are completed. Minimizing the waiting time

for write back operations will reduce the eviction cost. To do this, cache replacement algorithms should be aware of the states of queues within

flash chips.

In this paper, we propose an Eviction-Cost aware Cache Replacement algorithm, named ECR, to improve the performance of flash-based

SSDs. The basic idea is to minimize the waiting time of write back operations when the cache is full. To achieve it, we prefer to evict a dirty page

belonging to the chip which needs shortest time to complete all requests in its queue. The main contributions of this paper are as follows.

• We propose a model to estimate the time of a chip completing all the requests in its queue, including the potential garbage collection and

metadata writing.

• We propose an eviction-cost-aware cache replacement algorithm, which always evicts the least recently used page in the chip with the

shortest waiting time.

• We design a multi-LRU lists structure, in which each LRU list is dedicated to recording all dirty pages on each chip, to speed up the search

operation and victim selection in cache. Besides, we keep the clean pages in cache in a Clean-LRU list.

• We implement ECR and compare it with state-of-the-art proposed schemes. Our experimental results show that ECR can reduce the average

response time by as much as 59.55%, 55.32%, and 44.84% compared to LRU, CFLRU, and GCaR-CFLRU, respectively.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the background and motivate our work. In Sections 3 and 4,

we present the detailed design of ECR and the experimental results, respectively. In Section 5, we compare ECR with some related works. We

conclude this work in Section 6.

2 BACKGROUND AND MOTIVATION

2.1 Background

In this paper, we consider NAND flash memory, or short flash memory. A flash chip is divided into some blocks, and a block consists of some

pages. A flash page must be erased before writing new data to it because of physical constraints. To improve write performance, flash devices

usually implement out-of-place updates, each of which writes the new data to a free page and invalidates the previously mapped page. If the

number of free blocks becomes smaller than the predetermined threshold, the garbage collection (GC) will be evoked, which selects a victim

block to recycle, ie, reads the valid pages from the block, re-writes them into a free block, and then erases the victim block. The granularity

of write/read operations in flash memory is a page, which is typically 4 to 16 KB in today's flash devices,18 while the erase operation must be

operated at the granularity of a block. The time cost of an erase operation is usually one order of magnitude higher than a write operation, which

can significantly increase the waiting time of use's requests in the queue.

Figure 1 shows the typical architecture of an SSD.19,20 When an I/O request arrives, the host interface logic (HIL) in SSD will enqueue it into a

device queue and translate it into a flash-aware request. The flash translation layer (FTL) is mainly responsible for cache management, address

translation, and I/O scheduling. At the back end of SSDs, there are multiple independent channels, each of which connects to one or more flash

chips. Each flash chip consists of several dies, and there are a number of planes in each die.19 If a request does not hit in cache, the logical

page number (LPN) of the request should be translated to its physical page number (PPN). After that, the request will be enqueued into the

corresponding chip queue according to its address and waits to be dispatched. In the chip queue, some of the I/O requests come from the host

and some of them are imposed by garbage collection. Due to the spatial and temporal locality, it is common that applications frequently access

FIGURE 1 Internal organization of SSDs
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the same flash chips within a short time interval.21 In practical systems, the workloads on different chips may be seriously skewed, which means

that some chips are very busy and some are not busy or idle. If a chip is overloaded, it will incur long waiting time for the I/O requests submitted

to it and postpone the completion time of the I/O requests.

2.2 Motivation

Most of the traditional cache management algorithms are designed to increase the hit ratio. However, the hit ratio is very relevant to the cache

size and the access pattern of workloads. Therefore, we cannot consistently get a high hit ratio because of the limited cache size and poor locality

in some workloads. From another point of view, we can also improve the performance of cache by optimizing the replacement scheme. When

the cache is full, we should evict a page in cache to make room for the accessed page. If the evicted page is a dirty page, ie, it has been updated

since it was loaded into cache, we should write back the page into flash and induce to a write back operation. In write-dominant workloads, there

are many dirty pages in cache such that dirty pages are likely to be evicted. Therefore, reducing the number of evicted dirty pages and minimizing

the eviction cost will also improve the performance of cache.

There are some approaches to optimize the replacement scheme in cache. CFLRU13 prefers to evict clean pages in LRU list to avoid writing

back dirty pages into flash chips. However, in write-dominant workloads, there are not so many clean pages in cache. Due to the combined

consideration of both eviction efficiency and hit ratio, CFLRU prefers to evict a clean page in clean-first region. However, it is hard to find a clean

page for eviction in write-dominant workloads. To study the eviction efficiency of CFLRU, we conducted experiments with six write-dominant

workloads. The experimental setup and the selected traces are presented in Table 2 and Table 3 in Section 4. Figure 2 shows that the ratio of

replacing a dirty page with CFLRU is 61.02%-94.42% for six workloads even if it gives a higher priority to evict clean pages. All the CFLRU-based

schemes14-16 encounter the same problem.

GCaR17 tries to avoid evicting pages to the chips in the GC state and alleviates the contention between write back operations and GC

operations. Thus, GCaR reduces the delay of user requests submitted to some chips which are executing GC. In the same experimental setup

as in Figure 2, we find that only 19.28% to 67.81% of the evicted dirty pages belong to the chips in the GC state in LRU scheme, as shown in

Figure 3. This implies that there are only a small portion of situations that can be optimized by GCaR. Therefore, we can improve GCaR for the

case of an SSD being not in the GC state by taking the skewness of loads on different chips into consideration.
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FIGURE 2 The probability of replacing a dirty page in CFLRU
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FIGURE 3 The probability of replacing a dirty page belonging to the chip that is in the GC state
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FIGURE 4 The CDF of unbalance rate of chip-level queues

In SSDs, the access delay to chips consists of two parts, the flash access time and the waiting time. The access time for a write/read request is

decided by hardware and fixed, while the waiting time is the time duration between a request enqueued into a chip queue and dequeued from it.

The waiting time depends on the access time of all the requests in the corresponding chip queue. Reducing the waiting time of a request can not

only reduce its response time, but also reduce the waiting time of subsequent requests to this chip. We define the CQCTt
i

(Chip Queue Complete

Time) as the time to complete all the requests in the queue of chip i at time t, which is the waiting time of the next request to this chip. CQCTt
i

covers the write/read costs, potential GC costs, and metadata costs. We find that, at most time, the CQCTs of different chips vary in a wide

range. To capture this, we define the unbalance rate22 of chip-level queues as

ubalance rate =
max
1≤i≤n

CQCTt
i

n∑
i=1

CQCTt
i
∕n

,

where n is the number of chips in an SSD. In the above experiments, we also compute the cumulative distribution function of unbalance rate of

chip-level queues during the runtime under LRU scheme, shown in Figure 4. We find that there are almost 60% of the cases that the unbalance

rates are larger than 10, which means that the CQCT of the busiest chip is more than 10 times bigger than the average. As a result, if we evict

pages belonging to the chips with minimum CQCT, the delay of writing back operation will be reduced.

Based on the aforementioned experimental results and findings, we aim to design a novel cache replacement scheme, which takes into account

the current states of waiting requests queues on chips, to improve the performance of SSDs.

3 THE DESIGN OF ECR

Taking the eviction cost into consideration, we propose an Eviction-Cost aware Cache Replacement (ECR) algorithm in this paper to minimize the

cost of replacing a dirty page and improve the request response time of SSDs. Figure 5 outlines the design of ECR, which is mainly composed of

three key modules, namely, Cache Replacement Unit (CRU), Chip Queue Monitor Unit (CQMU), and Multi-LRU Structure (MLS). CRU chooses an

FIGURE 5 High-level overview of ECR
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appropriate victim page to be evicted when cache is full. CQMU monitors the chip queues to provide necessary information for the decision of

CRU. MLS organizes the pages in cache to support quick searches for pages.

The data structures of other replacement algorithms can be integrated into ECR easily. The conversion from the original cache algorithms to

the ECR-based algorithms will be smooth, because ECR proposes a model to calculate the waiting time of different chips. In other words, the

cached data in each chip can be managed by other algorithms, and just use CQMU module to select a target chip with shortest waiting time.

3.1 Chip queue monitor unit

In SSDs, there is a chip-level queue for each chip to enqueue the requests accessing the data on it. Chip Queue Monitor Unit (CQMU) is used

to compute the expected time for processing all the requests in a chip queue at current time, denoted as Chip Queue Complete Time (CQCT).

CQCT also represents the waiting time of a new request arriving at this chip. The requests in a chip queue consist of write/read requests coming

from users and imposed by Garbage Collection (GC). Therefore, CQCT covers the time of processing user's write/read requests and the time cost

by GC and the time for writing the summary page if necessary. We formalize CQCT in Equation (1). The symbols in Equation (1) are explained

in Table 1. In the SLC flash memory, the write/read latency is constant. However, in MLC and TLC, the write/read latencies of LSB page and

MSB page may be different. In this equation, we assume that the write/read latency is constant to simplify the model, which makes ECR is only

suitable for SLC flash memory. However, the basic idea is also suitable for MLC and TLC flash memories, and it just needs to adjust the latency

according to the physical page, which it requests

CQCTi = Lr ∗ Ni
r + Lw ∗ Ni

w + Si ∗ Ti
gc + Lsp ∗ Ni

sp. (1)

SSDs usually need to maintain a minimum number of free pages to perform data transfer during GC.2 When the number of free pages is

smaller than the predetermined threshold, the corresponding chip will activate GC process to recycle some invalid pages. The GC state can be

formulated as Equation (2). GC process will first choose a victim block according to the GC scheme (eg, greedy scheme23) to erase. Then, it will

migrate the valid pages in this block to other free pages. A write and a read operation are needed for each valid page migration. At last, it will

erase this block. Ultimately, the GC time cost is computed by Equation (3).

In a flash block, it usually uses the last flash page in this block to hold some summary information for this block. It means that, when an

active flash block only has one free page left, it will write a summary page into this free page.24 This summary page write operation is also

time-consuming, whose latency is only a little smaller than the latency of a normal flash write. Therefore, we also take the summary page writes

into consideration to compute CQCT, which can be derived as Equation (4)

Si =
⎧⎪⎨⎪⎩

0 if Ni
fp
− Ni

w > Nmfp

1 if Ni
fp
− Ni

w ≤ Nmfp

(2)

Ti
gc = Lgc + Ni

vp ∗ (Lr + Lw) (3)

Nsp =
⎧⎪⎨⎪⎩

0 if Ni
w + Si ∗ Ni

vp < Ni
fpb

− 1

1 + (Ni
w + Si ∗ Ni

vp − (Ni
fpb

− 1))∕(Ni
p − 1) if Ni

w + Si ∗ Ni
vp ≥ Ni

fpb
− 1.

(4)

TABLE 1 A list of symbols

Symbol Description

Lr Latency of a flash read operation

Lw Latency of a flash write operation

Lgc Latency of a flash erase operation

Lsp Latency of a summary page write

Ni
r Number of read requests in Chip i Queue

Ni
w Number of write requests in Chip i Queue

Np Number of pages in a flash block

Ni
fp

Number of free pages in Chip i at current time

Ni
fpb

Number of free pages in the active block in Chip i at current time

Ni
mfp

Minimum number of free pages in a chip, if the number of free page is

less than this value, it will activate GC

Ni
vp Number of valid pages in the victim block, which will be erased in Chip i

Ni
sp Number of summary pages, which will be written in Chip i

Si A flag represents if Chip i will activate GC, 1 for Yes, 0 for No

Ti
gc Time for a GC operation in Chip i
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3.2 Multi-LRU structure

In ECR, we use multi-LRU lists to organize the pages in cache rather than a single LRU list, where each LRU list contains dirty pages for each

chip and a common Clean-LRU list contains the clean pages on all chips. If a read request misses in cache, it will turn to access this page on flash

chip. The requested page will be loaded into cache, and marked as a clean page, inserted into the Clean-LRU list. If a write request hits a clean

page in the Clean-LRU list, the page will be marked as a dirty page and will be moved from the Clean-LRU list to the LRU list of dirty pages in the

corresponding chip according to its logical page number.

When a request arrives in cache management module, ECR first searches the data in Clean-LRU list. If it hits in Clean-LRU list, the requests can

be serviced directly; otherwise, ECR gets the chip number from the request's address and then searches the data entry in the corresponding chip

LRU list. The multi-LRU list structure accelerates the speed of the search operation in cache compared to a single LRU list.

Next, we consider the selection of victim pages for eviction and the impact of this selection on cache hit ratio. In ECR, we always firstly select

a chip according to the information provided by Chip Queue Monitor Unit and then select the least recently used page belonging to this chip as a

victim for eviction. Thus, multi-LRU lists will not bring any extra negative impact on cache hit ratio under the ECR scheme. In contrast, employing

multi-LRU lists can not only accelerate the search operation in cache but also improve the speed of selecting a victim page for eviction.

3.3 Cache replacement unit

Evicting a clean page in cache does not need a write back operation, so the eviction cost of a clean page is zero. ECR also prefers to evict a

clean page in cache when cache is full like CFLRU.13 Keeping all the clean pages in a Clean-LRU list makes it faster to find a clean page in cache,

especially when there are only a few clean pages in cache. In ECR scheme, when the cache is full, Cache Replacement Unit (CRU) firstly checks

the Clean-LRU list. If it is not empty, CRU will choose the least recently used page in Clean-LRU list as the victim for eviction. Unfortunately,

however, the Clean-LRU list is empty at most of the time for write-dominant applications. When the Clean-LRU list is empty, CRU will call Chip

Queue Monitor Unit (CQMU) to compute the Chip Queue Complete Time (CQCT) for each chip. The CQCT of chip i represents how long it will

wait to be executed, when a request arrives in chip i at current time. CQMU will always return a chip number with the minimum CQCT to CRU.

Then, CRU will choose the least recently used dirty page in the LRU list of the chosen chip as a victim for eviction. To do so, ECR minimizes

the waiting time of write back requests, and consequently minimizes the latency of eviction operation. Selecting the least recently used page in

dirty pages LRU lists of chips introduces no negative impacts on the cache hit ratio. Because of multiple dirty page LRU lists and the common

Clean-LRU list, ECR improves the performance of SSDs.

4 PERFORMANCE EVALUATION

4.1 System configuration

SSD Configurations. In our experiments, we use a trace-driven simulator, DiskSim25 with SSD extension,2 which has been widely used to evaluate

the performance of SSDs. In this paper, we simulate an SSD of 64 GB with 64 chips, which implements a greedy garbage collection and dynamic

wear leveling schemes. The SSD's over-provisioning ratio is set as 15%, the default setting of most SSDs.2 The other parameters can be found in

Table 2. In our experiments, we firstly warm up the SSD to reach a steady performance and then start to measure the performance of different

schemes. The cache size is set to 32 MB unless otherwise specified. The other configurations and the FTL scheme are set to default in DiskSim.

ECR is mainly optimized for the page-level mapping FTL as it shows a higher performance than block-level or hybrid-mapping FTL.1 Therefore,

we only conduct the experiments based on page-level mapping FTL.

Workloads. We first use six realistic enterprise scale workloads to evaluate the performance of different cache management schemes. ECR

is mainly optimized for the write-dominant applications, so we collected some write-dominant traces from these block-level traces, which are

collected from 36 volumes in an enterprise data center for one week.26,27 These traces come from a wide range of enterprise-scale application

domains. The more information about these traces can be found in Table 3. At last, we also create a series of synthetic traces to study the

efficiency of ECR under workloads with different write/read ratios and access patterns.

TABLE 2 SSD parameters2

Parameter Value Parameter Value

SSD Capacity 64 GB Page size 4 KB

# of chips 64 Page read Latency 25 us

# of planes per chips 8 Page write Latency 200 us

# of block per plane 512 Block erase Latency 1.5 ms

# of pages per block 64 Chip Xfer Latency(per byte) 0.025us
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TABLE 3 Statistics of workloads

Trace # of Requests Write Ratio Avg. Size (KB) Description

hm_0 3 993 316 0.65 8.88 Hardware monitoring

prn_0 5 585 886 0.89 12.54 Print server

proj_0 4 224 524 0.88 38.11 Project directories

prxy_0 12 518 968 0.97 7.08 Firewall/web proxy

src1_2 1 907 773 0.75 29.26 Source control

src2_0 1 557 814 0.89 7.60 Source control

Baselines. In our evaluations, we compare ECR with three different cache management algorithms, LRU, CFLRU,13 and GCaR.17 LRU is the

most widely used cache replacement algorithm. CFLRU and GCaR are more recent proposals summarized as follows.

• CFLRU is a flash-aware cache management scheme. It splits LRU list into working region and clean-first region, and it prefers to evict clean

pages in clean-first region. The performance of CFLRU is related to the size of clean-first region. Therefore, in our evaluation, we set the size

of clean-first region as S∕x, where S is the cache size and x varies from 1 to 6.

• GCaR can be regarded as the state-of-the-art scheme, which takes GC interference into consideration. It prefers to evict pages belonging to

the chips not in the GC state. GCaR can be integrated into CFLRU and further improve the efficiency of the cache in SSDs. Therefore, we

additionally compare the performance of ECR with GCaR-CFLRU scheme in our evaluations.

4.2 Evaluations with realistic workloads

Response time. Figure 6 shows the normalized average response times of six traces under different cache management schemes. For these six

traces, we find that ECR reduces the average response time by 26.33% to 59.55%, 25.69% to 55.32%, and 19.97% to 44.84% compared with

LRU, CFLRU, and GCaR-CFLRU, respectively. The reasons for this improvement are as follows. There are only a few clean pages in cache for

write-dominant traces; CFLRU can hardly find a clean page for eviction when cache is full, which makes CFLRU have the similar performance

with LRU and only show a little improvement for some traces. Although GCaR-CFLRU can hardly benefit from the CFLRU scheme, it benefits

from avoiding evicting dirty pages belonging to the chips in the GC state. Thus, GCaR-CFLRU achieves some improvement of the efficiency of

page eviction compared to LRU. However, ECR aims to minimize the waiting time of writing back dirty pages, which minimizes the latency of

the eviction operation and reduces the waiting time of the subsequent requests to the corresponding chips. As a result, ECR achieves largest

improvement compared with other schemes. Especially for proj_0, ECR reduces the response time by 44.84% compared to GCaR-CFLRU. This is

because proj_0 is highly write-intensive and with highly skewed chip queues, which makes ECR more efficient.

Hit ratio. Figure 7 shows the cache hit ratios of six traces with different cache management schemes. We find that CFLRU, GCaR-CFLRU, and

ECR has similar hit ratios with LRU. This is because these schemes are all based on LRU. Although they use some different techniques to improve

LRU, they still use the LRU principle to utilize the access locality of workloads. We use the multi-LRU to organized the pages in cache, but we

find that it only has a little negative impact on hit ratio, less than 10% for all six traces.

Standard Deviation of Response Time. Figure 8 shows the normalized standard deviation of response times of six traces with different cache

management schemes. For these six traces, we find that ECR reduces the standard deviation of response time by 25.50% to 63.46%, 21.77%

to 63.04%, and 14.61% to 53.18% compared to LRU, CFLRU, and GCaR-CFLRU, respectively. ECR always tries to evict the pages belonging to
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FIGURE 9 Probability of replacing a dirty page in ECR

the chips with the smallest chip queue complete time, which alleviates the unbalanced time cost for different chips to complete the requests on

them and achieves great improvements on standard deviation of response time.

Insights of ECR. ECR benefits from not only the preference to evicting pages in Clean-LRU list, but also minimizing eviction cost. Figure 9 shows

the probability of replacing dirty pages with ECR. We find that it has a very high probability of replacing dirty pages with ECR for all six traces,

which means that preference to evicting clean pages in Clean-LRU list only contributes a little to the improvement of ECR. Furthermore, we give

detailed evaluations about ECR. First, we only prefer to evict clean pages in Clean-LRU list and turn to the least recently used page in the whole

LRU list if there is no clean page. This scheme is very like CFLRU, just setting the size of clean-first region being equivalent to the cache size, so

we name this scheme as CFLRU𝜉 . Then, we ignore the Clean-LRU list in ECR, all dirty pages, and clean pages being organized in the corresponding

chip LRU list. We name this scheme as ECR𝜉 . It always evicts the least recently used page in the chip LRU list whose chip queue complete time

is the minimum. Figure 10 shows the normalized average response times of these schemes. We find that CFLRU𝜉 only has a little improvement
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FIGURE 10 Normalized average response time
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FIGURE 11 Normalized waiting time of eviction requests

TABLE 4 Comparisons of waiting time reduction and response time reduction

Trace Reduction of Reduction of Trace Reduction of Reduction of

waiting time response time Trace waiting time response time

hm_0 0.1667 0.3522 prxy_0 0.2432 0.2644

prn_0 0.2898 0.3587 src1_2 0.3273 0.3340

proj_0 0.7133 0.5596 src2_0 0.2221 0.3158

compared to LRU for most of the traces, even has a poorer performance than LRU for hm_0 because of the negative impact on hit ratio. These

results lead to the conclusion that evicting clean pages in ECR may only contribute a little to its improvement. The performance of ECR𝜉 is

very close to that of ECR, as shown in Figure 10, even that ECR𝜉 shows slightly shorter response time than ECR for hm_0 because of the bad

performance of CFLRU𝜉 . Although both of preference to evicting clean pages and being aware of eviction cost contribute to ECR, most of the

improvement of ECR comes from being aware of eviction cost.

Waiting time of eviction requests. ECR always prefers to evict a dirty page belonging to the chip which needs shortest time to complete all

requests in its queue. This can make eviction write requests have the shortest waiting time. Figure 11 shows the normalized waiting times of

eviction requests under different schemes. They are normalized to that of LRU schemes. We can find that ECR can reduce the waiting time of

eviction requests by 13.14% to 71.33%, 18.70% to 71.20%, and 4.25%-61.48%, compared to LRU, CFLRU, and GCaR-CFLRU, respectively. The

reduction of waiting time makes the eviction requests be completed quickly, which can reduce the waiting times of normal requests. Therefore,

ECR can reduce the response time of user requests. We compare ECR with LRU scheme, and we show the reduction of waiting time of eviction

operations and the reduction of response time in Table 4. We can find that the more reduction of the waiting time is, the more reduction of

the response time is. proj_0 has a great reduction on waiting time of eviction operations, reaching to 71.33%, and accordingly, the reduction of

response time reaches to 55.96%.

Response time under background GC. Figure 12 shows the normalized average response times under different schemes employing background

garbage collection. We can find that ECR can also reduce the response time by 25.92% to 56.09%, 25.52% to 55.66%, and 20.10% to 45.38%

compared to LRU, CFLRU, and ECaR-CFLRU, respectively. Although it can process GC in background, the GC operation will also compete with

normal write/read requests in write-intensive workloads. If one of write requests in the chip queue is written to the last free page, background

GC will be evoked, and then the subsequent requests in the chip queue must wait to be handled until the GC process is completed. If the write

requests are not intensive, after a write request is written to the last free page, it has enough idle time to process GC before the next write
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FIGURE 12 Normalized average response time

request arrives. In this situation, ECR may only have little improvement. Therefore, we can conclude that ECR also can make great improvement

in write-intensive workloads although it employs background GC.

4.3 Evaluation with synthetic workloads

To evaluate the performance of ECR for different types of workloads, we use some synthetic workloads to evaluate ECR. We use both uniformly

and normally distributed workloads and vary the write ratio of these two types of workloads from 20% to 80%. In our experiments, the logical

page numbers in uniform distributed workload are uniformly distributed in a 300 MB range, and the standard deviation of the logical page

numbers in normal distributed workload is set to 10 000. The average request sizes of all workloads are equal to the size of a flash page, and the

numbers of requests in all workloads are 2 000 000.

Uniformly Distributed Workloads. Figure 13 shows the normalized average response times with different cache management schemes for the

uniformly distributed workloads with different write/read ratios. We find that, when the write ratio is 20%, CFLRU, GCaR-CLRU, and ECR only

have a little improvement compared to LRU scheme. This is because there are only a few write requests, which only introduces a limited number

of dirty pages in cache and a few GC operations. In this case, as all baselines including CFLRU, GCaR-CFLRU, and ECR give a high probability

to select a clean page for eviction, with the increasing write ratios, ECR significantly outperforms those schemes, and the improvement reaches

to the maximum when the write ratio is 80%. This is because there are a few clean pages in cache when the write ratio is 80%, and the victim

page has a very high probability of being a dirty page. Moreover, ECR achieves better performance by carefully selecting the evicted pages to

minimize the costs of writing back dirty pages. CFLRU performs slightly better than LRU. GCaR-CFLRU also achieves better performance with

the increasing write ratios, compared to all schemes except ERC. This is because GCaR-CFLRU only takes the current GC state into consideration.

Figure 14 shows the hit ratios with different cache management schemes for the uniformly distributed workloads with different write/read ratios.

We find that all the schemes have the same cache hit ratios. Because the accessed pages are uniformly distributed, there is no much temporal

locality that can be utilized, which makes cache hit ratio be constant no matter which cache management scheme we use.

Normally Distributed Workloads. Figure 15 shows the normalized average response time with different cache management schemes for the

normally distributed workloads with different write/read ratios. When the write ratio becomes larger, there are more dirty pages in cache so

that in all schemes dirty pages have a higher probability to be evicted and more write back operations are introduced. ECR aims to select an

appropriate dirty page to minimize the cost of write back operation, while the other schemes are not aware of that cost. Thus, when the write
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FIGURE 13 Normalized response times of uniform distributed workloads
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FIGURE 14 Hit ratios of uniform distributed workloads
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FIGURE 15 Normalized response times of normal distributed workloads
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FIGURE 16 Hit ratios of normal distributed workloads

ratio reaches about 0.7 or higher, ECR performs significantly better than other schemes. Figure 16 shows the hit ratios with different cache

management schemes. Although the workloads are normal distributed, we find that ECR still has the similar hit ratio to LRU because of the careful

selection of the victim page.

5 RELATED WORKS

Cache is one of the most important design to improve the performance of storage systems.28 For cache replacement, there have been plenty of

studies. Least Recently Used (LRU) is the most common used algorithm for cache management. There are also many algorithms based on LRU
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and extending it for some particular workloads, such as 2Q,8 LRU-K,9 ARC,10 and LIRS.11 However, all these algorithms only pay attention to

improve the cache hit ratio.13 Thus, they greatly improve the performance of HDDs. However, this improvement cannot be directly applied for

flash-based SSDs12 due to the unique characteristics in SSDs.

There are also some flash-aware cache policies being proposed. CFLRU13 assigns a higher priority to dirty pages to stay in cache. It splits the

LRU list into the working region and the clean-first region. It prefers to evict the clean pages in the clean-first region, and turns to evict the least

recently used page if there is no clean page in clean-first region. However, there are many dirty pages in cache for write-dominant applications.

Therefore, CFLRU can hardly find the clean pages in clean-first region and often evict the least recently used page just like LRU algorithm. There

are also some schemes been proposed to optimize CFLRU. LRU-WSR14 pays more attention to reduce the number of write operations. It adds

an additional cold flag to mark the cold pages and tries not to keep cold dirty page in cache. It prefers to select a clean page as a victim without

checking the status of the cold flag. CCF-LRU15 takes the access frequency of clean pages into consideration, and it classifies the clean pages

into cold and hot ones. It prefers to evict cold clean pages and the eviction of hot clean pages will be delayed. AD-LRU16 maintains two LRU lists,

ie, cold LRU list and hot LRU list, where cold LRU list stores the pages that only accessed once and hot LRU list stores the pages that accessed

at least twice. However, these algorithms are all based on CFLRU, and they face the same problem as CFLRU. They can hardly find clean pages

for eviction in write-dominant applications and are not aware of the cost when evict dirty pages. BPAC,29 LB-CLOCK,30 PUD-LRU,31 and REF32

are all proposed to improve the cache management base on block-level or hybrid mapping FTL. However, in this paper, we only considerate the

page-level mapping FTL as it shows a higher performance than block-level or hybrid-mapping FTL.1 There are also some works33-36 that take the

relationships between cache management policies and some other FTL functions into consideration.

More recently, GCaR17 takes the state of garbage collection into consideration. GCaR assigns higher priority to the pages belonging to flash

chips that are in GC state to stay in cache. Therefore, GCaR reduces the contentions between the I/O caused by eviction and the I/O caused by

GC. However, it does not consider the queuing states of different chips, which may evict dirty pages to the chips with longer waiting queue. Our

ECR evicts dirty pages belonging to the chips with the shortest waiting time, which speeds up the write back operation of dirty pages and further

improves the performance of cache replacement.

6 CONCLUSIONS

The traditional cache replacement algorithms mostly focus on improving hit ratio or trying to evict clean pages. They are not aware of eviction

cost. In an SSD, there are a number of chips with skewed queues on different chips. Therefore, the cost of write back operations for evicting dirty

pages may be varied in a wide range. Taking this into consideration, we have proposed an eviction-cost aware cache replacement algorithm to

minimize the time cost of evicting a dirty page. We give a higher probability to evict pages belonging to the chips with the shortest time to complete

the pending requests in their chip queues. To quickly select a victim page in cache, we design a multi-LRU list to organize the pages in cache. Our

experimental results show that ECR significantly reduces the average response time compared to state-of-the-art cache replacement algorithms.
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