
IEICE Electronics Express, Vol.*, No.*, 1–12

Boosting Performance of
SSD with Chip-level
RAID by Deferring
Garbage Collection

Jie Liang, Yongkun Lia), Hao Chen and Yinlong Xu
School of Computer Science and Technology, University of Science and Tech-

nology of China

No 96, Jinzhai Road Baohe District, Hefei City, Anhui, 230026, P.R.China

a) ykli@ustc.edu.cn

Abstract: Garbage Collection (GC) degrades SSDs’ performance

notably, especially for SSDs deployed with chip-level RAID. To address

this issue, we propose a deferring garbage collection (DGC) scheme to

improve the I/O performance. DGC first predicts whether GC will be

triggered on a chip by monitoring its amount of awaiting write requests

and the available free pages, and then redirects some pending writes

to other “idle” chips so as to defer the GC on busy chips and mitigate

the interference between GC and writes. We implement DGC atop

a trace-driven simulator. Compared with traditional GC schemes of

SSD deployed with chip-level RAID-5, DGC can reduce the average

response time by 5.8% - 46.7%, and the 99-th percentile response time

by 25.3% - 77.6%, under different workloads.

Keywords: RAID, SSD, Garbage Collection, performance

Classification: Circuits and modules for storage

References

[1] S. Yan, et al.: “Tiny-Tail Flash: Near-Perfect Elimination of Garbage

Collection Tail Latencies in NAND SSDs,” ACM Transactions on Storage.

Volume 13 Issue 3.(2017) (DOI:10.1145/3121133).

[2] N. Li, et al.: “A page lifetime-aware scrubbing scheme for improving reli-

ability of Flash-based SSD,” IEICE Electron. Express 14 (2017) 20170831

(DOI: 10.1587/elex.14.20170831).

[3] Y. Du, et al.: “CD-RAIS: Constrained dynamic striping in redun-

dant array of independent SSDs,” IEEE CLUSTER(2014) 212. (DOI:

10.1109/CLUSTER.2014.6968742).

[4] M. Jung, et al.: “HIOS: A host interface I/O scheduler for Sol-

id State Disks,” ACM/IEEE, ISCA(2014) 289. (DOI: 10.1109/IS-

CA.2014.6853216).

[5] N. Agrawal, et al.: “Design Tradeoffs for SSD Performance,” USENIX,

ATC (2008) 57.

[6] J. Kim, et al.: “Chip-level RAID with flexible stripe size and parity place-

ment for enhanced SSD reliability,” IEEE Transactions on Computers.

Volume 65 Issue 4, (2016) (DOI: 10.1109/TC.2014.2375179).

1

This article has been accepted and published on J-STAGE in advance of
copyediting. Content is final as presented.

DOI: 10.1587/elex.15.20180407
Received April 20, 2018
Accepted May 15, 2018
Publicized May 28, 2018

©IEICE 2018

IEICE Electronics Express, Vol.*, No.*, 1–12

[7] N. Shahidi, et al.:“Exploring the Potentials of Parallel Garbage Collection

in SSDs for Enterprise Storage Systems,” IEEE SC (2017) 561. (DOI:

10.1109/SC.2016.47).

[8] G. Ganger, et al.:“The DiskSim Simulation Environment(v4.0),” Parallel

Data Lab, http://www.pdl.cmu.edu/DiskSim/ Online-document, (2009).

[9] SNIA. IOTTA repository. http://iotta.snia.org/tracetypes/3.

[10] Y. Li, et al.:“Stochastic Modeling of Large-Scale Solid-State Storage Sys-

tems: Analysis, Design Tradeoffs and Optimization,” ACM SIGMETRICS

(2013) 179. (DOI:10.1145/2465529.2465546).

[11] D. Park, et al.:“Hot data identification for flash-based storage

systems using multiple bloom filters,” IEEE MSST (2011) 191.

(DOI:10.1109/msst.2011.5937216).

[12] D. Patterson, et al.:“A Case for Redundant Arrays of Inexpensive Disks

(RAID),” ACM SIGMOD (1988) 688. (DOI:10.1145/971701.50214).

[13] J. Liang, et al.:“Improving Read Performance of SSDs via Balanced Redi-

rected Read,” IEEE NAS (2016). (DOI:10.1109/NAS.2016.7549406).

[14] C. Petersen, et al.:“Solving Latency Challenges with NVM Express SSDs

at Scale,” https://www.flashmemorysummit.com/English/

Collaterals/Proceedings/2017/20170809 SIT6 Petersen.pdf.

[15] J. Kang, et al.:“The Multi-streamed Solid-State Drive,” USENIX Hot-

Storage (2014).

1 Introduction

Due to the lower power consumption, higher shock resistance, and better ran-

dom access performance, solid-state drives (SSDs) have progressively replaced

hard-disk drives (HDDs), and been extensively used in personal computers

and large-scale storage servers.

However, SSDs suffer from various kinds of performance issues, for ex-

ample, garbage collection(GC) [7]. Because of erase-before-write feature and

limited endurance, SSDs conduct out-of-place write which writes new data

into free pages and marks original old pages as invalid, and as a result, valid

pages and invalid pages are mixed in the same block. When the number of

free blocks is insufficient, GC would be invoked to reclaim free blocks. During

GC, SSDs must incur lots of unexpected reads and writes due to valid page

movement [5], after that they need an erase operation which also costs a large

amount of time. This results in long waiting time for requests that access

the same chips. There exist some recent works [1, 4] on optimizing the per-

formance of user requests which are affected by GC, and they achieve good

results. There is a new trend that SSDs are deployed with chip-level RAID-5

[1, 3, 6], to ensure fault tolerance, as MLC/TLC flash memory technology

increases SSDs’ capacity but sacrifices their reliability [2, 6]. However, in this

setting, the interference between GC and user requests becomes much more

severe due to the fact that RAID-5 incurs more writes when updating parity

chunks. As a result, the above optimization techniques for normal SSDs do

not work well for SSDs deployed with chip-level RAID-5. This paper aims to

mitigate the interference between GC and user requests in such settings.

2

IEICE Electronics Express, Vol.*, No.*, 1–12

Traditional approaches of GC have focused on reducing GC execution

time [11], exploring various kinds of victim block selection algorithm [10],

or hiding GC latency by performing it at non-critical request [4] to realize

optimization of GC workflow. However, almost all works require lots of

modifications of system.

On the contrary, in this paper, we study the GC issue of SSD deployed

with chip-level RAID-5 via a light-weight modification. Compared with pre-

vious methods, we only defer GC to boost performance of I/O requests. We

propose a deferring garbage collection (DGC) scheme which first predicts

whether GC will be triggered on a chip by monitoring its amount of awaiting

write requests and the available free pages, and then redirects some pending

writes to other “idle” chips so as to defer the GC on busy chips and mitigate

the interference between GC and writes. Extensive experiments demonstrate

that DGC decreases average response time of I/O requests significantly and

reduces the 99-th percentile response time observably over existing schemes

with limited storage overhead.

2 Related work

GC causes variability in performance and increases worst-case response time.

To address this issue, Jung et al. [4] proposes a host interface I/O scheduler

that is both GC-aware and QoS-aware. The scheduler re-distributes GC

overheads across non-critical requests to reduce worst-case latency in SSDs.

N. Shahidi et al. [7] study one of the least understood problems caused by

GC on modern SSDs: plane level resource underutilization. It proactively

runs GC on the remaining planes of a flash chip whenever any planes need to

execute on-demand GC. In this paper, our proposed DGC scheme does not

modify GC operation at any time, instead, it leverages idle chips and idle

time to defer GC so as to boost performance of SSD.

To offer consistent read latency, the I/O determinism scheme divides an

SSD into multiple NVM sets, each of which is QoS isolated region, and ensures

that requests performed against disjoint regions will not interfere[14]. With

the support of the isolated NVM sets, I/O determinism scheme maintains

two windows, namely, deterministic window and non-deterministic window,

in which the order of reads and writes can or cannot be controlled. Using this

scheme requires a significant amount of effort of understanding when reads

can be promoted before writes. In contrast to this solution, DGC avoids the

interference introduced by the background GC to user requests with no need

to understand and predict application behaviors. Furthermore, DGC can be

used in I/O determinism to mitigate the interference between GC and writes

in the non-deterministic window.

Multi-streamed SSDs improve the GC performance by maintaining mul-

tiple streams, each of which stores a set of data with the same lifetime ex-

pectancy, and sending writes to those streams when the specified lifetime of

the corresponding data meets the expectancy of that stream [15]. Unlike this

approach, instead of optimizing the GC mechanism, DGC aims to defer GC

3

IEICE Electronics Express, Vol.*, No.*, 1–12

Fig. 1. An SSD deployed with chip-level RAID-5.

until the chip idle time so that GC will not significantly impact the execution

of user requests. It is possible to combine DGC and multi-streamed SSDs so

that the system performance can be further improved.

3 Background and motivation

We set the traditional log-structured FTL of SSD deployed with chip-level

RAID-5 as baseline, and propose DGC to alleviate interference problem be-

tween GC and write requests in such settings. In this section, we first in-

troduce the SSD deployed with chip-level RAID-5, then explain GC and its

impact on user writes, and motivate our work at last.

3.1 SSD deployed with chip-level RAID-5

We first illustrate the SSD deployed with chip-level RAID-5 via Fig. 1. Chip-

level RAID within SSD provides tolerance against chip-level fault as many

previous works [1, 6] presented. As shown in Fig. 1, an SSD is divided

into stripes which consist of multiple chunks. Each stripe should be across

all chips and in practice subdivided into different parity groups. This can

shorten recovery cost and strengthen the robustness of the flash chips array.

In Fig. 1, the chips are divided into parity group 0 and parity group 1,

respectively. There is one parity chunk generated from the data chunks in

the same parity group of a stripe. Parity chunks are distributed among all

chips in round-robin for load balance. When one data chunk is lost, we can

use the remaining data chunks and the corresponding parity chunk in the

parity group to recover the lost one. When a data chunk is updated, the

corresponding parity chunk would be modified accordingly with either read-

modify-write (RMW) or read-construct-write (RCW). RMW first reads

the original data chunk and the original corresponding parity chunk, then

performs a XOR operation to compute a new parity chunk using these two

original chunks and the new data chunk, and finally writes the new data

chunk and the new parity chunk to the SSD. As a result, RMW needs four

I/O operations and one XOR operation for updating a data chunk. Unlike

RWM , RCW needs to read all other chunks which will not be updated in

the same parity group, then performs one XOR operation against all chunks

including the updated chunk(s) to produce a new parity chunk, and finally

writes the updated data chunks and the new parity chunk to the SSD. RAID

systems will choose either of the two techniques which leads to fewer I/O

operations.

4

IEICE Electronics Express, Vol.*, No.*, 1–12

Fig. 2. A schematic of GC.

3.2 Garbage collection

As shown in Fig. 2, the GC operation has three steps. First, FTL would select

a candidate victim block to execute GC operation. Second, FTL moves valid

pages in the candidate block to a clean block. Meanwhile, entries of the

valid pages in the mapping table are updated. At last, the erase operation

turns the selected victim block into a clean block. During GC, besides erase

operation, many unexpected reads and writes increase rapidly due to valid

page movement. This causes sharp degradation of SSDs’ performance [4].

3.3 Motivation

Fig. 3. An example of traditional SSD during GC.

Fig. 3 shows an example of traditional SSD during GC. In the example,

there are 8 chips in the SSD and 2 parity groups in a stripe. Each parity

group is composed of 4 chunks. There are 3 write requests (W0,W1,W2) in

the pending queue of the controller. As indicated in previous study [5], data

chunks are stored on all chips in round-robin by modulo operation. Logical

page number (LPN) means the initial address of requests. Therefore, we can

get the targeted chips of the request according to its LPN and size. W0 has

3 sub requests to access chip 0 to chip 2 which implies there is no un-updated

chunks in the parity group. Therefore, W0 has 4 write operations on chip 0

to chip 3 (including write parity chunk P0) as shown in Fig. 3. The array

system chooses RCW to compose the new parity group since RCW requires

fewer I/Os. While for W1, array system would choose RMW to compose

its parity group according to default setting when I/O operations are equal.

Therefore, W1 has 2 read and 2 write operations on chip 6 and chip 7 as

5

IEICE Electronics Express, Vol.*, No.*, 1–12

0

0.2

0.4

0.6

0.8

1

1.2

HM_0 STG_0 SRC2_0 RSRCH WDEV

R
es

p
o

n
se

 T
im

e

B
re

a
k

d
o

w
n

T_chip T_meta T_GC T_wait

Fig. 4. Response time breakdown.

shown in Fig. 3. As analyzed for W0, W2 also chooses RCW to compose

new parity groups and it has 1 read and 3 write operations on chip 0 to chip

3. Note that, W2 on chip 0 would invoke GC, and the response time to W2

would get a huge increase [4, 7] due to the erase operation and valid page

movement. Although there are idle chips (chip 4 and chip 5) for W2, RAID-5

waits for chip 0 to serve it.

To further reveal the impact of GC, we run five traces on an SSD of

64 chips with chip-level RAID-5 to show the breakdown of response time in

Fig. 4. The traces are selected from real-world servers by MSR Cambridge [9].

The other experiment settings and characteristics of workloads are described

as in Section 5. In Fig. 4, T chip means latency on chip which only depends

on hardware property. T meta denotes latency of searching or updating

metadata of a data chunk. T GC represents the operating and waiting time

of a GC operation. While invoking GC, all the requests behind GC would be

added by a large waiting time, as write request 2 shown in Fig. 3. At last,

T wait stands for the normal waiting time (not including waiting time due

to GC). We can easily observe that T GC and T wait are main factors for

the total response time to a request except for WDEV workload.

Based on these results, we see that GC operation of SSD deployed with

chip-level RAID-5 degrades the performance notably. To address this issue,

we propose a DGC scheme to boost the performance of SSD.

4 Design of DGC scheme

In this section, we first illustrate the main idea of DGC via a simple example,

and then describe the system architecture of DGC. At last, we show the

design details and system overheads of DGC.

4.1 Main idea

Fig. 5 illustrates how our proposed Deferring Garbage Collection (DGC)

works. We still take the scenario shown in Fig. 3 as an example. DGC keeps

detecting pending queue and status of chips. When DGC finds that the count

of free pages in a chip is less than the number of pending write requests of the

same chip, it will send an warning signal to the write request so as to indicate

that GC may be triggered soon. In the example, sub request of W0 on chip

0 is warned. The DGC will select candidate chip from other parity groups

to redirect warned requests. The candidate chip should be relatively idle.

6

IEICE Electronics Express, Vol.*, No.*, 1–12

Fig. 5. A schematic of DGC.

In the example, chip 4 and chip 5 are idle for current pending queue, and

they are both in parity group 1 while chip 0 is in parity group 0. Therefore,

DGC chooses chip 4 to redirect warned W0. Then DGC records targeted

chip number and other metadata information on W0’s mapping entry. Since

W0 has been redirected to chip 4, chip 0 can serve W2 before invoking GC.

The total three pending requests cost two time slots to be served, and this

improves the SSD’s performance greatly compared to the SSD in Fig. 3. At

last, after serving W2, GC is conducted on chip 0 to reclaim enough pages to

serve other requests in pending queue.

4.2 System architecture

Fig. 6. The design architecture of an SSD with DGC .

We realize DGC by using a trace-driven simulator. The system is com-

posed of three key modules, write module, read module, and DGC module,

as depicted in Fig. 6. We do not need to change SSDs’ internal module except

for mapping bits compared with the SSD deployed with chip-level RAID-5.

Write module buffers write requests, encodes data chunks and generates par-

ity chunks. We use a write buffer module to divide incoming write requests

into parity groups. Read module consists of a decode module and a buffer

module. The decode module serves read or updated requests by locating

parity group, and reading corresponding targeted data or parity chunk. The

buffer module is designed to limit extra I/Os induced by duplicated reads.

DGC module consists of queue monitor and GC detection. DGC can get

7

IEICE Electronics Express, Vol.*, No.*, 1–12

all of the chips’ queue condition from queue monitor to acquire the count of

pending write and read requests. From GC detection module, DGC can get

the status of chip to gain the count of free pages. Therefore, DGC can use

these information to estimate whether pending write requests would invoke

GC operation or not.

4.3 Design details

In this subsection, we describe the design details of DGC to show how DGC

predicts GC, how DGC selects targeted chips to redirect write requests, and

when and how DGC conducts the deferred GC.

Predict GC. Each SSD’s chip has its own queue. DGC can detect the

queue conditions to predict the occurrence of GC operation, based on the

count of write(Cw) requests in pending queue. DGC uses the information

from SSD configuration to record the count of remaining free pages(Cr), and

compare it to the Cw, if Cr < Cw, then DGC sends a warning to controller.

After redirecting requests to other chips, the warned chip’s Cw would get

decreased. Therefore, the warned chips would stay in a state of Cr = Cw.

There would be properly enough pages to serve subsequent write requests on

the warned chips.

Select targeted chips. After deciding to redirect some writes to other chip-

s, the best chips would be chosen based on following requirements. DGC will

select the chips from other parity groups to ensure fault tolerance. This is

because that once choosing the chip in the same parity group, and fault oc-

curs on this targeted chip coincidentally, the parity group can not recover it

as two data chunks are lost at the same time. DGC will compare estimated

completion time (CT) of all other candidate chips. Each CT has been record-

ed by a global variable. When a request is added in the pending queue, the

CT will be updated by adding a read or write unit completion time accord-

ing to its request type. In addition, the estimated arriving time of requests

(AT) is considered by DGC. DGC can get information from pending queue of

controller layer to record AT of each chip. DGC should have little influence

on targeted chips. Therefore, the targeted chip should meet the requirement

that its CT added a write unite should be not more than AT .

Conduct GC. After redirecting requests, the original chips also may be

subjected to GC operations. To solve this problem, DGC needs to conduct

GC operation on these original chips. Although these chips reach the thresh-

old of over-provisioning space, while there is no requests to invoke GC to

reclaim free pages, GC would not be invoked on traditional SSD deployed

with chip-level RAID-5. Instead, DGC conducts GC operation during idle

time under such a condition. DGC can detect the pending queue condition to

recognize idle time, for instance, examining whether pending queue is empty

or not.

4.4 Storage overhead

For traditional SSD, FTL has a mapping table to record every logical page

number (LPN) to physical page number (PPN) which does not record tar-

8

IEICE Electronics Express, Vol.*, No.*, 1–12

LPN PPN Redirected Targeted Chip #

4B 4B 6b1b

Fig. 7. Storage Overhead of DGC with 64 chips.

geted chip number as it can be calculated by a modular operation. Usually,

for a 4096 bytes data chunk, it needs 8 bytes mapping entry to implement

this function. Whereas for DGC, data chunk needs to change its targeted

chip number due to redirection of write operations. There needs to be one

extra bit to record whether redirected or not and needs extra logN mapping

bits to record targeted chip numbers where N is total number of the chips.

For example, supposing that the SSD has 64 chips, DGC only needs to add

7 extra bits to 8 bytes mapping entry for every 4096 bytes data chunk. For a

256GB SSD with 64 chips, there needs 512MB for traditional FTL mapping

table, and 56MB extra space for DGC.

4.5 Reliability and write amplification

As shown in Fig. 5, DGC will select the chips from other parity groups to

redirect the write request, while the encoding relationship of the redirected

write request keeps unchanged. For example, W0 on chip 4 also takes part

in the parity group 0 with W0 on chip 1, W0 on chip 2, and P0 on chip 3 to

ensure fault tolerance, although it is located in the parity group 1. Once one

of the four chunks is lost, we can recover it by decoding the three remaining

chunks. Therefore, we conclude that DGC does not sacrifice the reliability

of SSD deployed with chip-level RAID-5.

The write amplification of chip-level RAID-5 within SSD has been well

analyzed in Kim et al.’s work [6] and Du et al.’s work [3]. The DGC only

redirects write requests to other idle chips, and introduces no extra write for

SSD deployed with chip-level RAID-5. Therefore, DGC has no extra write

amplification compared with SSD deployed with chip-level RAID-5.

5 Performance evaluation

In the following subsections, we first introduce our system configurations and

the workloads used in the experiments, then present the experimental results.

5.1 Experimental setup and workloads

Table I. SSD parameters

Parameter Value

Page Size 4KB

of pages per block 32

of blocks per chip 8192

of chips per SSD 64

Page read latency 0.025ms

Page write latency 0.200ms

Block erase latency 1.500ms

9

IEICE Electronics Express, Vol.*, No.*, 1–12

0

5000

10000

15000

20000

25000

30000

35000

40000

0

0.2

0.4

0.6

0.8

1

1.2

Total Write Read Total Write Read Total Write Read Total Write Read Total Write Read

HM_0 STG_0 SRC2_0 RSRCH WDEV

N
u

m
b

er
 o

f
D

ef
er

re
d

 G
C

N
o
rm

a
li

ze
d

 A
v
er

a
g
e

R
es

p
o

n
se

 T
im

e

RAID-5 RAID-5+DGC Number of deferred GC

Fig. 8. Average response time of RAID-5 and RAID-

5+DGC under the MSR traces.

We use a trace driven simulator, DiskSim with SSD extension [8], which

has been widely used in the exploration of SSDs, to evaluate the performance

of DGC. We model an SSD based on a common setting as shown in Table I.

For data allocation, the widely used round-robin method is applied in page-

level address mapping. The over-provisioning ratio is set to 15%. Greedy

garbage collection and dynamic wear leveling are implemented in FTL. The

parity group size is 8 in following evaluations.

Table II. Statistics of I/O workloads.

Trace # of Requests Write Ratio Working Set Unique Write Space

HM 0 3993316 0.6451 14.0 GB 4.6 GB

STG 0 2030915 0.8472 10.8 GB 1.3 GB

SRC2 0 1557814 0.8966 15.6 GB 1.2 GB

RSRCH 0 1433655 0.9168 16.9 GB 0.9 GB

WDEV 0 1143261 0.7993 16.9 GB 0.8 GB

The workloads in the experiments are chosen from MSR Cambridge traces

[9], which are widely used in previous works to evaluate SSDs’ performance.

Table II shows the statistics of these traces. The working set means the dif-

ference between the maximum page number and the minimum page number.

The unique write space indicates unduplicated accessed space for all write

requests. Note that the traces are pre-processed to make all requests size be

aligned with 4 KB. In Table II, HM 0 trace has the maximum unique write

space, and WDEV trace has the minimum unique write space.

5.2 Average response time of requests

Fig. 8 shows the results of the normalized average response time with RAID-

5 and RAID-5+DGC. On average, DGC reduces the total response time by

22.9% compared to RAID-5. DGC performs the best under HM 0 workload

with a reduction of response time by 46.7%, while performs the worst under

WDEV workload, only with a reduction by 5.8%. For write requests, DGC

reduces write response time by 23.5% compared to RAID-5 on average. DGC

performs the best under HM 0 workload with a reduction of write response

time by 40.4%, while performs the worst under WDEV workload, only with

a reduction by 6.8%. For read requests, DGC reduces read response time by

14.3% compared to RAID-5 on average. DGC performs the best under HM 0

10

IEICE Electronics Express, Vol.*, No.*, 1–12

0

5000

10000

15000

20000

25000

30000

35000

40000

0

0.2

0.4

0.6

0.8

1

1.2

Total Write Read Total Write Read Total Write Read Total Write Read Total Write Read

HM_0 STG_0 SRC2_0 RSRCH WDEV

N
u

m
b

er
 o

f
D

ef
er

re
d

 G
C

N
o

rm
a

li
ze

d

9
9
- t

h
 P

er
ce

n
ti

le

R
es

p
o

n
se

 T
im

e

RAID-5 RAID-5+DGC Number of derferred GC

Fig. 9. The 99-th percentile response time of RAID-5 and

RAID-5+DGC under the MSR traces.

workload with a reduction of read response time by 57.4%, while performs

the worst under WDEV workload, with a reduction by 0.1%. We show the

number of deferred GC on the right-side y-axis. It is easily observed that the

more GC being deferred, the better performance it gets.

The main reason is that GC has more impact on total response time under

HM 0 workload, while less under WDEV workload as shown in Fig. 4. The

unique write space influences the GC operation, as the conclusion from [10].

The larger space is, the more latency the GC has. This is because that the

larger one has more valid pages in victim block compared with the smaller.

Therefore, HM 0 performs better than WDEV.

5.3 The 99-th percentile response time of requests

Fig. 9 shows the results of the 99-th percentile response time with RAID-5

and RAID-5+DGC. On average, DGC reduces the 99-th percentile response

time by 48.9% compared to RAID-5. DGC performs the best under HM 0

workload with a reduction of the 99-th percentile response time by 77.6%,

while performs the worst under WDEV workload, with a reduction by 25.3%.

For write requests, DGC reduces the 99-th percentile response time by 49.5%

compared to RAID-5 on average. DGC performs the best under HM 0 work-

load with a reduction of the 99-th percentile response time by 73.9%, while

performs the worst under WDEV workload, with a reduction by 28.6%. For

read requests, DGC reduces the 99-th percentile response time by 26.1% com-

pared to RAID-5 on average. DGC performs the best under HM 0 workload

with a reduction of the 99-th percentile response time by 81.9%, while per-

forms the worst under WDEV workload, with a reduction by 1.2%. The long

tail latency has an obvious dependency on waiting time. DGC can alleviate

the GC impact on waiting time, therefore the more avoided GC contentions

are, the better performance DGC can get.

5.4 Sensitivity to parity group size

Fig. 10 shows the results of average response time of DGC with different

parity group size. We can find that as the parity group size increases, the

average response time becomes shorter. When the parity group size increases

from 4 to 16, the average response time decreases by 17.8%. The reason is

that there are fewer counts of parity chunks as parity group size increases.

Therefore, a large number of write and read operations would decrease.

11

IEICE Electronics Express, Vol.*, No.*, 1–12

0

0.2

0.4

0.6

0.8

1

1.2

HM_0 STG_0 SRC2_0 RSRCH WDEV

N
o

rm
a

li
ze

d
 A

v
er

a
g

e

R
es

p
o

n
se

T
im

e

Size=4 Size=8 Size=16

Fig. 10. Average response time of DGC with various parity

group size.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

HM_0 STG_0 SRC2_0 RSRCH WDEV

Im
p

ro
v

em
en

t
R

a
ti

o

Size=4 Size=8 Size=16

Fig. 11. Improvement ratio of DGC with various parity

group size.

Fig. 11 shows the improvement ratio of DGC with different parity group

size. We can find that as the parity group size increases, the improvement

ratio becomes smaller. When the parity group size increases from 4 to 16,

the average improvement ratio of DGC decreases by 3.5%. The reason is that

there are fewer counts of parity groups in a stripe as their size rises. This

reduces the number of candidate chips for DGC. It becomes more difficult to

get relatively idle chips with limited requirements.

6 Conclusion

In this paper, we propose a novel SSD write scheme to improve I/O perfor-

mance of SSDs with chip-level RAID-5. With DGC scheme, I/O requests

are redirected to idle chips for avoiding suffering from large delay of GC op-

erations. When original chips are in idle state, deferred GC would run in

background to get enough free space to serve coming requests. For practi-

cal deployment, we implement DGC with different enterprise traces atop a

widely-used trace driven simulator. Our extensive experiments demonstrate

that compared with traditional scheme, DGC decreases average response time

of I/O requests significantly and reduces the 99-th percentile response time

observably with limited storage overhead.

Acknowledgments

This work was supported by National Nature Science Foundation of China

under Grant No. 61772484 and No. 61772486.

12

