Xinjun Yang
Alibaba Cloud Computing

Qingda Hu
Alibaba Cloud Computing

Zongzhi Chen
Alibaba Cloud Computing

Zetao Wei
Alibaba Cloud Computing

From Scale-Up to Scale-Out:
PolarDB’s Journey to Achieving 2 Billion tpmC

Feifei Li
Alibaba Cloud Computing

Panfeng Zhou
Alibaba Cloud Computing

Zheyu Miao
Alibaba Cloud Computing

Jing Fang
Alibaba Cloud Computing

Yingqiang Zhang
Alibaba Cloud Computing

Qiang Zhang
Alibaba Cloud Computing

Rongbiao Xie
Alibaba Cloud Computing

Xingxuan Zhou
Alibaba Cloud Computing

Hao Chen
Alibaba Cloud Computing

Shuai Li
Alibaba Cloud Computing

Chuan Sun
Alibaba Cloud Computing

Xiaofei Wu
Alibaba Cloud Computing

ABSTRACT

In the past decade, cloud databases have experienced rapid devel-
opment and growth. PolarDB, Alibaba’s cloud-native OLTP data-
base, has evolved significantly to meet the increasing demand for
cloud-native architectures and now serves hundreds of thousands
of customers across various industries.

This paper presents PolarDB’s evolution over the past eight
years, with a focus on scalability, performance, and cost-efficiency.
Initially, PolarDB adopted a primary-replica architecture based on
disaggregated storage, with an emphasis on enhancing single-node
performance for scale-up in modern many-core systems. To achieve
this, we co-designed PolarDB with cutting-edge hardware, includ-
ing RDMA, to improve performance. Meanwhile, we refined the
internal architecture, including improvements to B+ tree concur-
rency control and transaction management, ensuring high scala-
bility in scale-up scenarios. More recently, our focus has shifted to
scaling out PolarDB to meet the performance and scalability needs
of ultra-large-scale applications. By leveraging RDMA, we opti-
mized distributed transaction processing, transforming PolarDB into
a high-performance, high-scalability and cost-effective distributed
database. In the TPC-C benchmark, PolarDB scaled out to 2340
nodes and achieved over 2 billion tpmC, with a jitter rate of no
more than 0.16% during the 8-hour stress test. Compared to the
second- and third-highest-performing databases in public TPC-C
results, PolarDB’s tpmC is 2.52X and 2.91x higher, respectively. In
terms of cost-effectiveness, PolarDB’s per-tpmC cost is 37% and
79.5% lower than that of the other two systems, respectively.

PVLDB Reference Format:

Xinjun Yang, Feifei Li, Yinggiang Zhang, Hao Chen, Qingda Hu, Panfeng
Zhou, Qiang Zhang, Shuai Li, Zongzhi Chen, Zheyu Miao, Rongbiao Xie,
Chuan Sun, Zetao Wei, Jing Fang, Xingxuan Zhou, and Xiaofei Wu. From
Scale-Up to Scale-Out: PolarDB’s Journey to Achieving 2 Billion tpmC.
PVLDB, 18(12): 5059-5072, 2025.

Feifei Li is the corresponding author.

doi:10.14778/3750601.3750627

1 INTRODUCTION

Over the past decade, applications have increasingly migrated to
the cloud for better elasticity and lower costs. In response, cloud
databases have experienced explosive growth to accommodate the
growing demands of these applications. PolarDB, one of the leading
cloud databases, has evolved substantially since its launch, adapting
to meet diverse requirements across various industries.

PolarDB adopts a disaggregated storage architecture, with the
distributed file system PolarFS [7] designed specifically for cloud
databases. PolarDB has been highly optimized to work with this
distributed file system and leverages RDMA for fast storage I/O
to enhance performance. Initially, PolarDB employed a primary-
replica architecture, which is common in database systems. Given
the high core count and performance of modern servers, a single pri-
mary node was sufficient for many applications. Consequently, dur-
ing this phase, the primary focus was on improving scalability for
scaling up on modern multi-core servers. However, we found that
existing databases, such as MySQL, struggled to scale effectively
with the increasing core count. For example, MySQL’s throughput
stagnated once exceeding 64 CPU cores in Sysbench read-write
workloads. To address these issues, PolarDB introduced several
novel designs aimed at improving scalability in many-core envi-
ronments. Specifically, we developed PolarIndex, a new concur-
rency control scheme for the B+ tree that alleviates bottlenecks in
write-intensive workloads. Additionally, PolarTrans was proposed
to optimize transaction management in high-concurrency scenar-
ios, significantly improving performance. Meanwhile, PolarTrans

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750627

https://doi.org/10.14778/3750601.3750627
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3750601.3750627

also plays an important role in distributed transaction processing
in PolarDB, improving the PolarDB’s 2PC protocol.

Recently, our focus has shifted towards scaling out PolarDB to
support ultra-large-scale applications, such as e-commerce, bank-
ing, and cryptocurrency trading. Our previously proposed multi-
primary architecture, PolarDB-MP [63], is optimized for scenarios
with high data access contention across nodes and relies on disag-
gregated shared memory for deployment. While it delivers superior
performance in high-contention workloads compared to distributed
transaction solutions within moderately sized clusters, its scalability
is fundamentally constrained by the physical limitations of disag-
gregated memory, making it difficult to scale beyond a few hundred
nodes. Similar limitations are observed in other shared-storage-
based multi-primary databases [9, 17, 28, 37]. For well-partitioned
workloads like TPC-C, where cross-partition contention is minimal,
PolarDB-MP offers no clear advantage and faces deployment chal-
lenges at ultra-large scales. In such scenarios, distributed databases
based on data sharding [12, 14, 25, 56] provide a more scalable
alternative, supporting clusters with thousands of nodes.

However, these distributed database systems typically rely on
TCP/IP-based communication for cross-node messaging, which sig-
nificantly burdens the CPU, as it must process network messages.
As aresult, transaction throughput is often limited by network band-
width [20, 66]. To address this, PolarDB introduces a distributed
version co-designed with RDMA to eliminate the communication
bottleneck in distributed transactions. At its core is Polar2PC, a
novel two-phase commit (2PC) protocol optimized for RDMA.

Unlike the standard 2PC protocol [22, 54], where the coordinator
node (CN) sends a prepare message to each participant node (PN)
during the prepare phase, Polar2PC utilizes a one-sided RDMA
interface to directly check the execution state of the PNs, determin-
ing if the transaction is ready to commit. In the commit phase, to
integrate with the PolarTrans design, the in-memory transaction
states are updated via the one-sided RDMA interface. This allows
for a fast acknowledgment to the application, with the release of
PN resources occurring in the background while still maintaining
the same ACID guarantees. Compared to the standard 2PC proto-
col, Polar2PC significantly reduces network overhead, leading to
improved performance. Meanwhile, it maintains compatibility with
the X/Open XA standard [55], ensuring seamless integration into
existing ecosystems.

Finally, we evaluate PolarDB with the TPC-C [15] benchmark.
Despite being proposed decades ago, TPC-C remains a valuable
benchmark today and continues to be widely used for evaluating
modern databases [12, 25, 30, 58, 65]. In our evaluation, we scale out
the PolarDB cluster to 2340 nodes, achieving over 2 billion tpmC
with a jitter rate of no more than 0.16% during the 8-hour stress
test. When compared to the second- and third-highest-performing
systems in the publicly available TPC-C results [2], PolarDB’s tpmC
is 2.52X and 2.91x that of the other two systems, respectively. Ad-
ditionally, PolarDB demonstrates superior cost-efficiency, with a
per-tpmC cost 37% and 79.5% lower than that of the other two sys-
tems, respectively. These results demonstrate PolarDB’s exceptional
performance, scalability, and cost-effectiveness.

We summarize our main contributions as follows:

600

450

300

150

Throughput(K-QPSs)

8 16 32 64 88 120
Number of cores

Figure 1: The scalability of MySQL

e We present the evolution of PolarDB from scale-up to scale-out
and introduce the design and architecture of PolarDB.

o We detail the implementation of PolarDB’s scaling-up optimiza-
tions and its distributed transaction design for scaling-out.

o We evaluate PolarDB using the official TPC-C benchmark, achiev-
ing 2 billion tpmC with a low cost per tpmC, achieving the highest
performance in the public TPC-C results.

This paper is structured as follows. First, we present the background
and motivation in Section 2. Then we provide PolarDB’s overview
and detailed design in Section 3 and Section 4. Next, we evaluate
PolarDB in Section 5 and review the related works in Section 6.
Finally, we discuss PolarDB’s evolution in Section 7 and conclude
the paper in Section 8.

2 BACKGROUND AND MOTIVATION

2.1 Database scale-up

Since the launch of AWS Aurora [58] in 2014, a growing number of
cloud databases have emerged, such as Azure SQL Database [33],
TaurusDB [1] and PolarDB [36]. Many of these adopt a primary-
replica architecture. In this architecture, a primary node handles
both read and write requests, while one or more replica nodes
handle only read requests. Since only the primary node processes
write requests, it must be scaled up to improve performance in
write-intensive workloads. However, most existing cloud databases
have focused more on the evolution of the architecture from on-
premises to cloud deployment, with relatively little attention given
to enhancing single-node scalability on modern many-core systems.

As MySQL serves as the foundation for many cloud databases,
we use it as a representative example to investigate scale-up limita-
tions. Figure 1 illustrates MySQL'’s performance as we increase the
allocated CPU resources, demonstrating its ability to scale up. We
observe that when the number of CPU cores is below 64, MySQL’s
throughput scales linearly with CPU resources. However, beyond
64 CPU cores, throughput saturates, failing to scale further despite
additional computing resources. This suggests that MySQL’s inter-
nal design becomes a bottleneck, preventing efficient utilization of
modern many-core servers. Given that current servers often fea-
ture hundreds of CPU cores, MySQL’s limited scalability restricts
its ability to fully exploit available hardware resources, making
scale-up improvements essential for cloud databases. In our inves-
tigation, we found two main bottlenecks limiting scalability in the
single-node setup. One is the B+ tree concurrency limitation, and
the other is the internal transaction management component.

B+ tree concurrency. The B+ tree is a widely used data structure
for indexing in many databases [10, 23, 27, 41, 47, 62], including

PO L2 1005 o

pr[8o f10] [12]15]e

Thread-1 Thread-2

Figure 2: An example of concurrent access to a B+ tree

MySQL and its variants. To support concurrent access, most imple-
mentations employ latch ! mechanisms at the B+ tree page level.
During an insertion, a page may overflow, requiring it to be split into
two pages, with the parent page also updated to add a new record.
This structural modification operation (SMO) introduces challenges
for concurrency control, especially when executed alongside other
B+ tree operations. For example, as shown in Figure 2, when Thread-
1(T1) searches for value 12 in the B+ tree, page PO directs the search
to page P1. Before T1 latches P1, Thread-2 (T2) may insert value 9
into P1, triggering an SMO that moves value 12 to a newly created
page P2. In this scenario, T1 fails to find value 12 on P1, leading
to inconsistencies in the search process. To address this issue, a
common approach is to hold the parent page latch until the child
page is successfully latched. Additionally, during an SMO, all pages
involved in the operation must be latched before the modification
begins, preventing search threads from observing an inconsistent
B+ tree. However, this introduces a new challenge: while search
operations acquire latches from higher levels to lower levels, SMOs
originate at lower levels and acquire latched upward, potentially
leading to deadlocks. To eliminate this risk, a mainstream solution
is to prevent concurrent SMOs and enforce a top-down latching
order during SMO execution. In MySQL’s implementation, during
an SMO, an shared-exclusive (SX) latch is applied to the entire B+
tree, allowing only shared latches but blocking all modifications.
This ensures that no other SMOs can proceed and that the ongoing
SMO can acquire latches on all affected pages in a top-down or-
der. This solution prevents concurrent SMOs, even if they operate
on unrelated subtrees, consequently, significantly limits database
throughput in high-concurrency update workloads. The situation
worsens when dealing with large tables, where data pages often
cannot fit into the buffer pool, forcing the SMO process to perform
multiple I/O operations to fetch the relevant pages. This further
prolongs SMO execution time, reducing system throughput. The
issue becomes even more severe in cloud storage environments,
where high I/0 latency amplifies the performance impact.

To address the above issue, and inspired by the Blink Tree de-
sign [34], PolarDB introduces PolarIndex, a new B+ tree concur-
rency control mechanism that allows concurrent SMO execution.
This design significantly improves concurrency and alleviates latch
contention, allowing more efficient index modifications under high-
concurrency workloads.

Transaction management. Multi-Version Concurrency Control
(MVCQC) is a widely used solution for managing concurrent data
access while ensuring transaction isolation and consistency. A com-
mon requirement in MVCC-based databases is that each transaction
needs a consistent snapshot of the database to maintain isolation.

!In this paper, we use the term latch to refer to short-duration synchronization mech-
anisms for physical consistency (e.g., protecting in-memory data structures), and
lock to refer to long-duration synchronization mechanisms for ensuring transactional
correctness (e.g., enforcing isolation levels).

To achieve this, MySQL-like databases typically maintain an active
transaction list, implemented as an array. When a transaction be-
gins, its transaction ID is added to the list, and it is removed when
the transaction commits. In this design, if an update is made by a
transaction in the active transaction list, this update is not visible
to any other transactions except the one that performed the update.
This design introduces the read view concept. When a transaction
or query starts, a read view is generated by copying the active
transaction list along with two variables: the current maximum
transaction ID (trx_idmax) and the minimum active transaction
ID (trx_idmin) at the time the transaction/query starts. When a
transaction reads a record, it first retrieves the transaction ID that
modified the record. If this transaction ID is greater than trx_idmax
in the read view, the record is not visible to the transaction, as it was
modified by a transaction that began after the concurrent transac-
tion. On the other hand, if the transaction ID is less than trx_idmin,
the record is visible, as its update was committed before the con-
current transaction began. In cases where the transaction ID falls
between trx_idmin and trx_idmax, it checks the read view’s active
transaction list to determine whether the corresponding transaction
is still active. While the read view plays a crucial role in transaction
management, it introduces a performance bottleneck. Specifically,
each transaction/query generates a read view by copying the active
transaction list from a global variable to a local copy. The global
active transaction list is protected by a global lock, which can cause
significant lock contention in high-concurrency scenarios. Given
that modern systems typically have many cores, this bottleneck
can severely limit the database’s scalability.

To overcome this issue, PolarDB proposes a new transaction
management scheme called PolarTrans, which eliminates the need
for the active transaction list. PolarTrans is implemented with a
variety of lock-free designs, allowing the read view to be generated
without locking. This significantly improves database performance
in many-core systems, enabling better scaling capabilities.

2.2 Database scale-out

Multi-primary databases. The multi-primary database is a solu-
tion designed for scaling out to meet the demands of applications
that require high scalability and large-scale clusters. The shared-
storage-based multi-primary databases [5, 9, 17, 28, 37, 63] usually
struggle primarily with managing conflicts between nodes and co-
ordinating transactions across them. They typically require extra
resources (such as the disaggregated shared memory in PolarDB-
MP) to handle the conflicts and manage global transactions.
Alternatively, data-sharding-based distributed databases provide
another approach to database scaling. Notable examples include
Spanner [14], CockroachDB [56], TiDB [25], OceanBase [65] and
TDSQL [12]. In these systems, data is partitioned across multiple
nodes, with each node having exclusive write/read access to its re-
spective data partition. This architecture offers excellent scalability
when application traffic is well-partitioned. However, if a transac-
tion spans multiple partitions, distributed transaction processing
becomes necessary to ensure the ACID properties of transactions.
2PC. The Two-Phase Commit (2PC) protocol is a widely adopted

solution for distributed transactions, and nearly all distributed
databases rely on it or its variants for transaction processing. The

protocol consists of two phases: prepare and commit. In the prepare
phase, the coordinator node sends a "prepare” request to all partici-
pant nodes. Each participant then checks whether it can commit the
transaction, responding with either a "yes" (commit) or "no" (abort).
In the commit phase, the coordinator sends either a "commit" or
"abort" command based on the responses received, and all nodes
finalize the transaction. In most implementations, the coordinator
communicates with participants over a TCP/IP-based network. This
approach can put significant strain on the CPU, which must handle
network messages, often limiting transaction throughput due to
network bandwidth constraints [20, 66].

The network bottleneck in 2PC motivates integrating RDMA for
message passing in PolarDB’s distributed version. We integrated
RDMA with the 2PC protocol and proposed the Polar2PC protocol,
which alleviates network bottlenecks and significantly enhances
distributed transaction performance. Several research efforts, such
as Tell [38], FaRM [19], FORD [68], DrTM[61] and DrTM-H [60]
have explored optimizing distributed transaction processing using
RDMA, particularly in main-memory databases. However, these
main-memory databases are often impractical for many OLTP
workloads, and while these proposals are promising, they remain
in the research phase and require further development to ensure
production-level stability.

2.3 Opportunities with RDMA

Recent advancements in network technology, including ultra-low
latency (typically just a few microseconds) and 400Gb/s throughput
from devices like the ConnectX-7 InfiniBand adapter [46], along
with the growing presence of RDMA in standard commodity clus-
ters [18, 72], are reducing the impact of network bottlenecks. Nu-
merous studies have leveraged RDMA to enhance database sys-
tems [48], including accelerating data synchronization [73], reduc-
ing locking overhead [4, 21], optimizing transaction processing [13,
19, 40, 53, 60, 66, 68], and improving index structures [39, 59, 74].
At Alibaba, RDMA is an integral part of the infrastructure, and
PolarDB is specifically designed to leverage it [63, 64, 70]. Every
PolarDB cluster in the Alibaba public cloud is equipped with RDMA
support, offering a significant advantage. This integration enables
PolarDB’s distributed version to be deployed without the need for
additional hardware costs. In PolarDB, we leverage the RDMA to
improve the distributed transaction processing. While many prior
systems leverage RDMA to overhaul the entire distributed trans-
action processing workflow [13, 19, 40, 53, 60, 66, 68], our design
adopts a more lightweight approach: RDMA is used exclusively
for data synchronization during the distributed transaction pro-
cessing. This selective integration preserves full compatibility with
the conventional two-phase commit protocol and requires mini-
mal changes to the existing codebase. Despite its simplicity, this
optimization yields significant performance improvements.

3 POLARDB OVERVIEW

Figure 3 provides an overview of PolarDB. A PolarDB cluster con-
sists of multiple database nodes, each capable of handling applica-
tion connections and providing equal read/write access. All nodes
are interconnected through a high-speed RDMA network for fast

Node-1 ¥ ¥ Node-n

| SQL parser/optimizer | SQL parser/optimizer |

| Trx engine (PolarTrans+Polar2PC) | | Trx engine (PolarTrans+Polar2PC) |

B+ tree indexing (PolarIndex) B+ tree indexing (PolarIndex)

Log synchronization Log synchronization

RDMA Network

I
I

S Storage (PolarFS + PolarStore)

Figure 3: The overview of PolarDB

communication. PolarDB employs a disaggregated storage architec-
ture, where each database node is connected to the disaggregated
storage layer. The storage system is implemented using PolarFS
and PolarStore [7], which ensures low-latency, high-throughput,
and high-availability storage. Meanwhile, PolarDB maintains com-
patibility with standard file system interfaces.

Each database node consists of an SQL parser/optimizer, transac-
tion engine and B+ tree indexing and log synchronization. PolarDB
has significantly improved these components to enhance scalability
on many-core systems. In particular, PolarTrans was introduced to
optimize transaction management and alleviate bottlenecks under
intensive workloads. In conjunction with PolarTrans, we designed
Polar2PC, an optimized two-phase commit (2PC) protocol, to en-
hance distributed transaction processing. For efficient indexing
under high concurrency, PolarIndex was developed to eliminate
bottlenecks in B+ tree structure modifications (SMOs). Addition-
ally, log synchronization ensures that the primary node’s logs are
replicated to standby nodes for high availability.

To implement distributed transaction processing, PolarDB parti-
tions user data and assigns different partitions to different nodes.
Each node can read and write only the data belonging to its own
partitions. However, to provide a transparent interface for applica-
tions, any node can receive queries, regardless of data partitioning.
When a query references data owned by other nodes, the receiving
node forwards the query to the appropriate node. This necessitates
a distributed transaction protocol. To address this, PolarDB intro-
duces Polar2PC, which co-designs the conventional 2PC protocol
with RDMA to achieve high-performance distributed transaction
processing, providing high-scalability.

4 IMPLEMENTATION AND OPTIMIZATION

4.1 PolarIndex

PolarDB also adopts the B+ tree for indexing. Although the B+
tree has been extensively optimized over decades, mainstream im-
plementations (such as in MySQL) still suffer from scalability bot-
tlenecks under write-intensive workloads, particularly on modern
many-core systems (see Section 2.1). Inspired by the B-link tree [34],
PolarDB introduces PolarIndex, a new concurrency control scheme
for the B+ tree, alleviating the SMO bottleneck and significantly
improving performance in write-intensive workloads. While in-
spired by the B-link tree, PolarIndex makes several key adaptations
for compatibility with the existing PolarDB codebase. It enables
read latches to support shared buffer pool access (required in many
databases) and avoids modifying page formats (for the consideration

o]
T

Phase-2

Figure 4: SMO in PolarIndex

of production compatibility) by using an optimistic right-traversal
strategy instead of high keys. It also incorporates other engineering
optimizations to better support production deployment. The core
idea of PolarIndex is to avoid latching the entire subtree during an
SMO and instead latch each page only when necessary. Addition-
ally, it eliminates the global tree latch, enabling concurrent SMOs.
These improvements significantly enhance B+ tree concurrency in
SMO-intensive workloads, leading to better overall performance.
However, implementing this design presents challenges. It requires
careful handling to prevent potential deadlocks and inconsistent
reads while ensuring compatibility with mainstream implementa-
tions for product stability and adoption.

Workflow. The search operation in a B+ tree follows a top-down
traversal, acquiring latches as it descends through the tree. In con-
trast, SMOs are triggered at lower levels and propagate upwards,
creating an inverse latching order that can lead to potential dead-
locks and increased latch contention. To address this, PolarIndex
eliminates the traditional latch coupling scheme, which involves
holding a latch at one level while acquiring a latch at another level.
Instead, PolarIndex acquires latches only at the level where concur-
rent access occurs. Figure 13 provides an example to demonstrate
how PolarIndex’s concurrency control scheme works. In this ex-
ample, an incoming insertion leads to the splitting of page P1. The
parent of P1is P0, and its sibling is P2. Instead of holding exclusive
(X) latches on all pages in the entire sub-tree during the entire SMO
operation, PolarIndex divides the SMO processing into two phases,
latching only a subset of pages in each phase to improve concur-
rency. During the first phase, latches are acquired only on P and
the newly generated page P3. Once P3 is ready and the correspond-
ing data has been migrated to it, PI updates its sibling pointer to P3,
completing the first phase. After this phase, the latches on P1 and
P3 are released. In the second phase, P0 is exclusively latched, and
a pointer is added to PO to reference the new page P3. During this
phase, only PO is latched, while its child pages remain unlatched.
Once the second phase is completed, the SMO operation finishes,
and the B+ tree structure is intact. It is important to note that be-
tween these two phases, no page is latched, and the B+ tree is in an
incomplete state. However, the tree is still able to serve searches,
albeit with some additional effort to ensure correctness. Between
these two phases, P3 has not yet been attached to its parent page
P0, so PO is not aware of P3. If a query attempts to find a record on
P3, the search will process P0 and assume the record is located on
P1, returning P1. Therefore, during the SMO operation, if a search
reaches P1, it may need to traverse to the next page if the target
record is not found in P1.

Advantages. The PolarIndex eliminates the need for a global
shared-exclusive (SX) latch on the entire tree during structural
modification operations (SMOs). This enables concurrent SMOs
in write-heavy workloads, significantly improving performance.
Furthermore, during an SMO, PolarIndex acquires the necessary

latches only at each phase, allowing intermediate states of the B-tree
to be visible to other threads while still ensuring data consistency.
This further enhances the concurrency of B+ tree access.

4.2 PolarTrans

In PolarDB, we designed a novel transaction management scheme,
PolarTrans, that alleviates bottlenecks in the existing transaction
management subsystem of mainstream databases, such as MySQL
and its variants. The primary goal of PolarTrans is to efficiently
maintain transaction information and improve high performance.

Transaction information table. The core data structure of Po-
larTrans is the transaction information table (TIT), which stores
transaction details, as shown in Figure 5. The TIT is organized as
an array, with each entry consisting of a transaction pointer and
the transaction’s commit timestamp (CTS). The transaction pointer
refers to an active transaction object during the runtime, while the
CTS represents the commit timestamp of the transaction if it is
committed. When a transaction begins, it is assigned an incremen-
tal transaction ID. Based on this transaction ID, a corresponding
TIT slot is allocated to the transaction. Typically, the allocation of
TIT slots is performed by taking the modulus of the slot count with
the transaction ID. Upon committing, the transaction stores its CTS
in the allocated TIT slot. Most operations on the TIT are lock-free,
ensuring high performance even under heavy workloads.

Transaction ordering. PolarTrans adopts the Lamport timestamp
for transaction ordering. It maintains a global variable, CTS_max,
as the logical timestamp, which is incremented to allocate a trans-
action’s CTS. To provide a snapshot of all committed transactions,
it also maintains another global variable, CTS_max_committed,
recording the maximum CTS of all transactions. When committing
a transaction, it first allocates a CTS from CTS_max by increment-
ing it, then writes the CTS to the transaction’s TIT slot, and finally
updates CTS_max_committed, if necessary, after the transaction
is committed. To ensure that a committed transaction’s TIT slot is
properly filled, the steps of CTS allocation and writing must be lock-
protected to guarantee atomic execution. Consequently, when allo-
cating a read view from CTS_max_committed to a transaction, any
transaction whose CTS is less than CTS_max_committed is consid-
ered visible because its TIT slot must be filled. This design enables ef-
ficient visibility checks by simply comparing CTS_max_committed
with the CTS stored in the TIT slot.

Data visibility. In PolarTrans, when reading a data record, it begins
by retrieving the transaction ID of the transaction that last updated
the record. Using this transaction ID, it queries the TIT to obtain the
transaction’s CTS. If the TIT slot associated with the transaction has
been reassigned to a new transaction, it indicates that the previous
transaction has been committed and its updates are now visible
to all transactions. Conversely, if the TIT slot remains unassigned,
PolarTrans can directly retrieve the CTS from that slot. A CTS
value still set to its initial value signifies that the transaction is still
active, meaning its updates have not yet become visible to other
transactions. Finally, if the CTS is less than or equal to the read
view’s timestamyp, it ensures that the current record is visible to the
current transaction.

slot 0 1 2 3 4 5 6 7
trx pointer | nullptr | 0x1d00 | 0x1350 | 0x1828 | nullptr | nullptr | nullptr | nullptr
CSN 0 99 INIT 0 0 0 0 0

Figure 5: Design of the Transaction Information Table (TIT)
in PolarTrans

TIT recycle. To optimize memory usage, the TIT size is limited, and
PolarTrans employs a background thread to periodically recycle TIT
slots. If a transaction’s updates are already visible to all transactions,
there is no need to retain its CTS for visibility checks. The recycling
process first determines the minimum timestamp among all active
read views, then recycles TIT slots where the CTS is earlier than
this minimum timestamp. During recycling, the transaction pointer
and CTS field of the TIT slot are reset, allowing future transactions
to reuse the slot. When a visibility check encounters a freed TIT slot
or one that has been reassigned to a new transaction, the previous
transaction that occupied this slot is considered committed, and its
updates are visible to all transactions.

TIT slot offloading. A transaction’s TIT slot is allocated based on
the modulus of the slot count with the transaction ID. If a TIT slot
is not recycled, the next transaction mapped to this slot cannot use
it and has to wait. If a long-running transaction causes the minimal
read view timestamp to remain unchanged, many transactions may
be forced to wait for the TIT slot to become available, significantly
reducing performance. To address this issue, we offload TIT slots
that block new transactions to a hash map. The hash map records
the IDs and CTS of these transactions. The background TIT recy-
cle thread also removes records from the hash map based on the
smallest timestamp of all active read views. When checking data
visibility, the hash map is also consulted to get a transaction’s CTS.
In most cases, TIT slots can be successfully recycled, and long-
running transactions are infrequent. As a result, the hash map is
typically empty and does not need to be checked often, ensuring
that its impact on performance is minimal.

Benefits. In PolarTrans, only the corresponding TIT slot is updated
during transaction begin and commit, and different slots can be
modified independently. This design avoids the contention on the
global active transaction list found in conventional approaches (as
discussed in Section 2.1). In particular, when generating a read view,
PolarTrans bypasses the costly copy of the global list by directly
checking data visibility via TIT slot access. As a result, PolarTrans
achieves high concurrency and performance, as shown in Figure 14.

4.3 RDMA-enabled distributed transaction

The two-phase commit (2PC) protocol is widely used in most com-
mercial databases to implement distributed transactions [6, 12, 25,
56, 65]. PolarDB also employs the 2PC protocol, but is co-designed
with RDMA to improvement performance. This section will present
our new 2PC protocol, Polar2PC, which is used in PolarDB.

Overview. As discussed earlier, many existing implementations
of the Two-Phase Commit (2PC) protocol rely on TCP/IP-based
networks, which often face significant network bottlenecks. To
overcome this limitation, we integrate RDMA into the Polar2PC
protocol to improve performance. Additionally, Polar2PC leverages

node-1 node-2 node-3
RDMA RDMA (
L

CN

TSO

Execution phase start trx
receive query-1 f-—____forward query
<trx id, LSN> _ ___j Execute
[node id] trxid | LSN ||g-====—="""

receive query-2 f=---eeeo_____ | forward query

Execute

Prepare phase

‘Wait for PNs"

logs to persist
e

~

Commit phase

Prepare writing TIT

Acquire CTS

Orusea Hybrid
Logical Clock (HLC)

Writing TIT

Acknowledge d
application

Cleanup le

Figure 6: The design of Polar2PC

the capabilities of PolarTrans to make the commit phase asynchro-
nous, while maintaining the same ACID guarantees.

Like most databases, PolarDB employs ARIES-style logging [43],
where each update generates corresponding redo logs and follows
a steal/no-force policy. Under this model, if a transaction’s redo
logs are fully persisted to storage, its updates can be considered
persistent. During the prepare phase of Polar2PC, RDMA is used to
check whether all redo logs of the transaction have been persisted,
determining if the transaction is ready to be committed. This opera-
tion only requires one-sided RDMA operations on the CN, without
involving the PNs, thus eliminating the need for message transfers
between the CN and PNs. In the commit phase, the CN obtains a
commit timestamp (CTS) and remotely writes it to the PN’s TIT
slot (explained in Section 4.2) via RDMA. As detailed in Section 4.2,
a transaction is considered committed when the CTS is filled in the
TIT slot. Once the CTS is filled on all PNs, the CN can acknowledge
the application that the transaction has been successfully com-
mitted. Afterward, the CN sends a commit message to the PNs to
release the corresponding resources, with this step occurring in the
background, not in the critical path of the distributed transaction
processing. The commit phase also requires only one-sided RDMA
operations before sending the acknowledgment, which significantly
enhances performance.

Workflow. In the PolarDB cluster, all nodes are primary and can
equally serve applications. The terms CN and PN are logical roles in
PolarDB. When a transaction is initiated on a node, that node acts
as the CN for the transaction, while any other nodes involved in the
transaction are considered PNs for that specific transaction. Figure 6
illustrates the workflow of a distributed transaction in PolarDB.
The cluster has three database nodes and one timestamp oracle
(TSO) server. Suppose an application connects to node-1. When
this connection starts a transaction on node-1, node-1 assumes

the CN role for the transaction. Given that this transaction has
two queries that access data stored on node-2 and node-3, node-1
(the CN) forwards these queries to node-2 and node-3, where they
are executed. In this case, node-2 and node-3 act as PNs for this
transaction. For simplicity, we refer to node-1, node-2, and node-3
as CN, PN-1, and PN-2, respectively, in this example.

In the execution phase, the CN receives queries from appli-
cations and forwards them to the PNs for execution. When a PN
receives a query from the CN, it starts a local transaction (if no
transaction is already in progress) and executes the query locally.
After execution, the PN responds to the CN with its local trans-
action ID and the current log sequence number (LSN) generated
by the query. Upon receiving the response, the CN records this
information within the current transaction, maintaining the PN’s
node ID, local transaction ID, and corresponding LSN. When the
CN receives a commit request from the application, it proceeds with
committing the transaction by following the Polar2PC protocol.

In the prepare phase, the CN checks its locally stored infor-
mation about the transaction, retrieves all involved PNs, and their
corresponding LSNs. The CN waits until the redo logs for the trans-
action are persistent on all PNs. To achieve this, each node maintains
a variable (LSNyysp) that indicates the current maximum LSN that
has been persisted on the node. A background thread flushes the
redo logs to storage in the order of LSNs and updates the LSNfy,,5p,
value accordingly. The CN can remotely read the LSNy,p, values
of all PNs using a one-sided RDMA interface and wait until all PN’s
LSNfpysh values exceed the LSN recorded by the CN for the current
transaction. Once this condition is met, all updates on all PNs are
persistent, indicating that the transaction is ready to be committed.

Although Polar2PC removes the traditional prepare round to
reduce latency, it implicitly assumes the PN is always ready to
commit unless explicitly aborted by the CN. While this sacrifices
the ability of the PN to unilaterally abort, we found in practice
that such aborts are rare. Therefore, this trade-off is justified by the
significant performance benefits it brings.

In the commit phase, the CN first remotely writes a flag (a prede-
fined special value, e.g., CSN_COMMITTING) to all PNs’ TIT slots
via RDMA to indicate that the transaction is committing. It then ac-
quires a commit timestamp (CTS) from the TSO and remotely writes
the CTS to all PNs’ TIT slots. Once the CTS is filled on all PN, all
changes made by this transaction are visible to other transactions.
Following this, the CN can immediately notify the application that
the transaction has been successfully committed. After acknowl-
edging the application, the CN sends a commit message to the PNs,
prompting them to release transaction-related resources. Once the
PNs acknowledge receipt of the commit message, the CN releases
its corresponding resources. Since the application acknowledgment
does not need to wait for the PNs’ commit (as the commit is asyn-
chronous), this design improves performance.

Commit timestamp. The commit timestamp (CTS) is a funda-
mental concept in distributed systems for ensuring consistency and
isolation. PolarDB supports two widely used approaches: times-
tamp oracle (TSO) and hybrid logical clock (HLC) [31]. PolarDB’s
TSO is implemented with RDMA, allowing database nodes to ac-
quire a CTS via one-sided RDMA in just a few microseconds. This
design guarantees strong consistency, but as the number of nodes

increases, the latency of CTS acquisition may also grow. To address
this, PolarDB offers HLC as an alternative for high performance in
large-scale clusters, providing lower latency at the cost of relaxed
consistency guarantees, as sequential consistency is not guaranteed
in HLC. However, different from the standard HLC that relies on the
TCP/IP network for timestamp synchronization across nodes, Po-
larDB employs RDMA for cross-node communication, significantly
improving performance.

Logging. During the execution phase, the CN adopts the ARIES-
style logging [43] to record both undo and redo logs for crash
recovery. In addition, we introduce extra log entries to ensure dura-
bility and consistency for distributed transaction processing. After
the execution phase, when the CN receives the COMMIT command
from the client, it first appends the distributed transaction metadata,
such as the distributed transaction ID and the identifiers of all PN,
to its redo log buffer. Once the CN successfully obtains the global
commit timestamp, it appends a prepare OK log entry and forces
a flush, ensuring that all buffered log records are persisted to disk.
Upon receiving the commit command from the CN, each PN com-
mits its corresponding local transaction and appends a local commit
log entry to its own redo log to indicate successful local commit.
This logging protocol guarantees the durability and consistency of
distributed transactions across all participating nodes.

Integration with PolarTrans. PolarTrans also plays a key role
in distributed transaction processing. In PolarDB, each node’s TIT
is accessible to all other nodes via RDMA. When a node acts as the
CN, it can directly write the CTS to the PN’s TIT via RDMA. Since
the TIT slot is allocated based on the modulus of the slot count with
the transaction ID, and because the CN knows the local transaction
ID on each PN, it can easily calculate the transaction’s TIT slot.
However, there is a difference in the process of filling the CTS in
TIT between single-node and distributed setups. In a distributed
setup, where more than one PN may be involved in a transaction,
the CN cannot write the CTS to all PNs’ TIT slots at the exact
same time. This introduces a potential issue: if another transaction
accesses data across different PNs, it may observe inconsistent
visibility—some updates may already be visible (where the TIT
slots are filled with the CTS), while others may remain invisible
(where the TIT slots are still empty), violating ACID properties. To
address this issue, we implement a two-step CTS filling process
during the commit phase. First, the CN writes a predefined flag,
CSN_COMMITTING, to the TIT slots on all PNs. Once this step
is successfully completed, the CN acquires the CTS from TSO and
finally writes it to all PNs’ TIT slots. If a transaction encounters the
CSN_COMMITTING flag during the visibility check, it must retry
until the TIT slot is fully populated with the final CTS. This ensures
that a transaction’s updates are either fully visible or fully invisible
across all nodes, maintaining consistency in the distributed system.

4.4 High availability and crash recovery

High availability. To ensure high availability, PolarDB deploys a
standby node for each primary node. When an update occurs on
the primary node, it generates redo logs, which are then transferred
to the standby node, allowing it to apply the logs and keep its data
up to date. The standby node can be deployed within the same
availability zone or across regions, providing different levels of

high availability. Users can configure log synchronization policies
based on fault tolerance requirements. For example, to prevent data
loss, the primary node can be configured to wait until the logs are
persisted on the standby node before committing the transaction.
Alternatively, if some data loss is acceptable, the system can be set
to asynchronous log shipping, improving performance by elimi-
nating commit-time delays. The failover process from a primary
node to its standby is managed by the PolarDB control plane. Po-
larDB includes a resource manager that monitors the health of all
instances, typically using a heartbeat mechanism. If a node failure
is detected, the manager instructs the standby node to take over,
ensuring seamless failover with minimal downtime. Additionally,
PolarDB employs a TCP keepalive mechanism between primary
nodes to rapidly detect failures. This prevents unnecessary delays
in handling connections to a crashed node, allowing the system to
quickly recognize failures and recover efficiently.

Recovery for distributed transactions. Similar to most databases,
PolarDB employs a redo-based recovery mechanism to ensure trans-
action consistency and durability. The CN; acting as the transaction
coordinator, records redo logs for all transaction state changes and
logs each phase of execution. During recovery, the CN replays the
redo logs to restore transactions to their pre-crash state. Mean-
while, PNs maintain redo logs for both local transactions and data
modifications. Additionally, to support rollback operations, PNs
also record undo logs for data changes. Since the CN coordinates
transaction execution, the recovery process is centrally managed by
the CN, with PNs following the CN’s instructions to maintain con-
sistency during recovery. When a primary node fails, the standby
node takes over and applies redo logs to recover all active trans-
actions. For transactions where the failed node acted as the CN,
the new primary determines the transaction’s final state based on
its last recorded status, deciding whether to commit or roll back.
For transactions where the failed node previously served as a PN,
it awaits instructions from the corresponding CN on whether to
commit or roll back its local transaction.

PolarDB adopts the Presumed Abort [45] protocol, where a trans-
action is considered aborted if no corresponding commit log entry
is found. During recovery, the final state of an active transaction,
whether to commit or roll back, is determined by its pre-crash
status. The CN first restores all involved PNs’ information. If the
transaction had already received a commit request from the client,
the CN checks whether all PNs have persisted their redo logs to
storage. If they have, the CN commits the transaction and sends a
commit command to all PNs; otherwise, it rolls back the transaction
and instructs all PNs to do the same.

In cases where a PN crashes while executing a query, the CN
detects the failure when it does not receive a response and notifies
all other PNs to roll back the transaction, returning an error to
the client. When that PN recovers, it checks for active transactions
where it previously acted as a PN and communicates with the CN.
If the CN no longer holds any information about the transaction, it
indicates that the transaction has already been rolled back, and the
PN follows suit. However, if the PN crashed after the CN received
a commit request from the client, the CN waits for the PN to re-
cover before continuing the commit process, ensuring transaction
consistency and durability across the distributed system.

4.5 Practical experience with RDMA

PolarDB is highly co-designed with RDMA network. However, de-
ploying RDMA at such a scale while maintaining high performance
is non-trivial and requires careful optimizations.

The first key optimization focuses on connection establishment
during initialization. In a large-scale RDMA-based cluster, every
node must establish connections with all other nodes. In our eval-
uation with 2340 nodes, each node needs to create at least 2339
connections during initialization. To accelerate this process, we par-
allelize connection establishment across multiple threads, which is
especially beneficial during failover scenarios where rapid recon-
nection is necessary. During cluster startup, each node retrieves
cluster topology information from the manager node and attempts
to connect to others. However, since nodes become available at
different times, an attempted connection may fail if the target node
is not yet ready. Instead of repeatedly retrying, which wastes time,
the system simply skips that node and waits. When the target node
eventually initiates its own connection to the current node, the
current node also verifies whether it already has a connection to
the target node. If not, it will establish one. This strategy ensures
efficient and non-blocking connection establishment.

The second optimization focuses on connection sharing. Due
to the limited memory buffer in the network interface controller
(NIC), an excessive number of RDMA connections can degrade
performance. To mitigate this, we limit each node pair to only two
RDMA connections (one in each direction), significantly reducing
the total number of connections. A single connection in one direc-
tion is shared across multiple threads within a node to maximize
efficiency. Since most RDMA communication in PolarDB relies on
fast one-sided operations, which typically complete within a few
microseconds and occur at a moderate frequency, our evaluation
confirms that a single connection per direction between two nodes
is sufficient and does not introduce any performance bottlenecks.

5 EVALUATION
5.1 Setup

Test platform. Our evaluation is conducted on machines, each
equipped with 2 Intel Xeon Platinum 8575C CPUs and 2TB DDR5
DRAM, running Alibaba Group Enterprise Linux Server 7.2 (Pal-
adin). These physical machines are connected via two 100Gbps
Mellanox ConnectX-6 NICs.

Workload. In our evaluation, we primarily use the TPC-C [15]
workload, a long-standing industry standard for measuring OLTP
(Online Transaction Processing) performance. Despite being in-
troduced decades ago, TPC-C has undergone multiple revisions
to remain relevant as computing power has increased by several
orders of magnitude. It remains a valuable benchmark today, as
demonstrated by its widespread adoption in evaluating modern
database systems [12, 25, 30, 58, 65]. The benchmark results are
measured in new order transactions per minute (tpmC), providing
a standardized metric for comparing OLTP performance across
different systems. Additionally, submission of a TPC-C result also
requires the disclosure of the total system cost. The system must
also include sufficient storage for data generated at the quoted tpmC

279 X RTE nodes ::] :] :] :
[R N

104 vCPU

1
768 GB memory ! :]

558 x client nodes
104 vCPU

COCoO -
768GBmemory 1 J () () ()t

3 X manager nodes | 12340 x database nodes
toswepy 1 3 o

I I 48 vCPU
7esGBmemory (C__J 0 (T) (CJ - CJ 1 51208 memory

Figure 7: System configuration in TPC-C benchmark

rate over 60 days. The total cost is then combined with tpmC to com-
pute a price/performance metric, enabling fair cost-effectiveness
comparisons across database solutions.

In addition to TPC-C, we also use Sysbench [29] , another widely
adopted benchmark, to evaluate specific aspects of PolarDB’s per-
formance, particularly in scale-up scenarios. This allows us to assess
the impact of our optimizations on transaction processing efficiency
under varying workloads, providing a more comprehensive evalua-
tion of PolarDB’s scalability and performance.

5.2 TPC-C testing

We first present PolarDB’s results on the TPC-C benchmark, with
the testing supervised by auditors from the TPC-C committee, and
the results have been validated by them. The system configuration
and detailed results are available on the TPC-C official website [2].

System configurations. Figure 7 illustrates the system archi-
tecture used during the TPC-C testing. To emulate a large-scale
real-world workload, we deployed 279 remote terminal emulator
(RTE) servers to simulate 1.6 billion users. The RTE servers generate
HTTP requests, which are sent to the client nodes. These client
nodes handle the incoming requests and communicate with the
database cluster. We deployed 558 client nodes to efficiently dis-
tribute the load. For the PolarDB database cluster, we deploy 2340
nodes, each equipped with 48 vCPUs and 512 GB of memory. These
2340 database nodes run on 1170 physical servers, each of which is
powered by two Intel Xeon Platinum 8575C CPUs @3.2GHz. To en-
sure high availability, each database node is paired with a standby
node, providing fault tolerance in case of failures. Additionally,
we deploy three manager nodes to oversee database cluster opera-
tions. For the RTE, client, and manager nodes, each node runs on a
dedicated physical server, equipped with two Intel Xeon Platinum
8269CY CPUs @2.5GHz.

Since the TPC-C benchmark does not require storage scalabil-
ity, we simplify the system configuration by using a local native
file system instead of cloud storage for testing. To ensure that this
choice does not affect performance results, we also compare Po-
larDB ’s throughput on cloud storage and native file system under
the same workload. As shown in Figure 12, both configurations
deliver similar throughput, validating that our test setup accurately
reflects PolarDB ’s real-world performance. For local storage, each
physical server is equipped with 14 SSDs, each with a capacity of
8.8TB, configured into two RAID-0 arrays. This setup provides suf-
ficient storage capacity and performance to sustain the 60-day peak
throughput requirement, as mandated by the TPC-C benchmark.

TPC-C configuration. For the TPC-C testing, we have followed
the standard TPC-C specifications [15] for the accuracy and relia-
bility of our evaluation. This also allows for fair and reproducible

Table 1: TPC-C results

Total tpmC tpmC/core Price/tpmC

Oceanbase 707 M 10.8 K 0.54 %

TDSQL 814 M 20.6 K 0.17 $

PolarDB 2055 M 36.6 K 0.11$
100%
75%
8 50%
25%
0%

0 50 100 150 200

Latency (ms)

Figure 8: The distribution of latency
performance evaluations. We initialize our test with 163.2 M ware-
houses, totally 13.43 PB data. To accurately simulate human behav-
ior, we incorporated some thinking time and keying time before
each transaction, by following the TPC-C specification. Addition-
ally, an additional 100 ms delay per transaction was introduced, as
required by TPC-C, to better reflect real-world OLTP workloads.

Overall performance. Among all publicly available test results
to date, PolarDB has achieved the highest performance. Detailed
benchmark results are available on the official TPC-C website [2].
Table 1 summarizes key performance metrics and compares Po-
larDB against TDSQL [12] and Oceanbase [65], which rank as the
second and third highest-performing databases in the public TPC-C
results. The results indicate that PolarDB achieves over 2 billion
tpmC, which is 2.91x and 2.52x that of Oceanbase and TDSQL,
respectively. This substantial performance advantage highlights
PolarDB ’s ability to handle extremely high transaction volumes
efficiently. Given that these systems operate with different node
configurations, we also evaluate the tpmC per CPU core to provide
a fair comparison. As shown in Table 1, PolarDB delivers 1.38% and
77.8% higher tpmC per core than Oceanbase and TDSQL 2.

In addition to throughput, cost-effectiveness is a critical factor
in database system evaluations. Table 1 also presents a cost com-
parison using price per tpmC as a metric. PolarDB demonstrates
the best cost-efficiency among the three systems, with its per-tpmC
cost being 79.5% lower than Oceanbase and 37% lower than TDSQL.
This is largely attributed to PolarDB ’s novel architecture, which
not only improves raw performance but also optimizes resource
consumption, reducing overall costs.

Beyond throughput and cost, latency is another critical factor in
OLTP workloads, as low transaction latency is crucial for deliver-
ing a smooth user experience in real-world applications. Figure 8
presents the cumulative latency distribution, illustrating PolarDB ’s
low-latency characteristics. The P90 latency is only 59.8 ms, signifi-
cantly surpassing the typical requirement of tens of milliseconds in
the TPC-C benchmark. This low-latency performance also ensures
“While this performance gap is primarily attributed to PolarDB’s optimizations, a

small portion of the improvement also arises from differences in the CPU models used
across these systems.

2000

1500

1000

(%3
(=3
=]

Throughput (M-tpmC)

0 5000 10000 15000 20000 25000 30000
Time (s)

Figure 9: Throughput jitter in an 8-hour stress test

_ 2000 70
g 6
E o0 IO .
; 75
Z 1200 E “©
5 Z
% 800 53
E3 S 20
g 400 =
= 10
=

0

0
1 300 600 900 1200 1500 1800 2100 1 300 600 900 1200 1500 1800 2100
Number of nodes Number of nodes

Figure 10: The scalability of PolarDB

that PolarDB can support high-frequency transactional applications
such as financial trading, large-scale e-commerce platforms, and
enterprise-level database systems.

Stability. The throughput jitter rate is a critical requirement in the
TPC-C benchmark, as it reflects a system’s ability to maintain stable
performance under sustained load. Figure 9 illustrates PolarDB ’s
throughput variation over time during an 8-hour stress test. At the
beginning of the test, the system undergoes a brief warm-up period,
where throughput gradually ramps up as caches are populated and
the system optimizes execution paths. This warm-up phase lasts
approximately 20 minutes, after which PolarDB reaches a stable
state. Following the warm-up, PolarDB maintains consistently high
throughput for the remainder of the 8-hour test, with a jitter rate
of less than 0.16%, which is significantly lower than the TPC-C
benchmark requirement of 2%. This exceptionally low fluctuation
indicates that PolarDB can deliver predictable and reliable perfor-
mance, even under prolonged high-load conditions. Such stability
is crucial for large-scale OLTP applications, where fluctuations
in transaction processing rates can lead to degraded user experi-
ence, increased latencies, or operational inefficiencies. PolarDB ’s
ability to achieve such low jitter stems from its optimized trans-
action processing, efficient concurrency control mechanisms, and
RDMA-based communication, which collectively minimize perfor-
mance degradation over time. The results demonstrate not only
the robustness of PolarDB ’s architecture but also its reliability in
handling real-world enterprise workloads that require sustained,
high-throughput operations over extended periods.

Scalability. Furthermore, we evaluate PolarDB’s scalability by
varying the number of nodes from 1 to over 2,000, as shown in Fig-
ure 10. The results demonstrate that PolarDB achieves nearly linear
scalability as the cluster size increases, maintaining high through-
put efficiency even at large scales. Additionally, the P90 latency
remains stable throughout the scaling process, with an increase
of only 20% when expanding to thousands of nodes. This high-
lights PolarDB’s ability to handle large-scale deployments while
preserving both throughput and latency requirement.

2500

2000 —

Failover
1500

1000

Throughput (M-tpmC)
wn
[=3
S

(=]

0 1200 2400 3600 4800 6000
Time (s)

Figure 11: Performance impact of failover in PolarDB

—e—PolarFS ~ —==Native FS

1 10 20 30 40 50 60
of nodes

Figure 12: PolarDB performance on PolarFS vs. Native-FS

Crash recovery. To evaluate the high availability of PolarDB,
we simulate a power failure by shutting down a machine during
testing. As shown in Figure 11, we randomly turn off a server at the
2790-second mark to trigger a power failure scenario. This causes
all instances running on the affected server to fail, prompting their
respective standby nodes to take over. For ongoing transactions,
the system automatically completes the necessary commit or roll-
back operations to maintain ACID guarantees. The failover pro-
cess completes within approximately 2 minutes, with a temporary
throughput drop of around 2.5%, demonstrating PolarDB’s ability
to recover quickly with minimal performance impact.

PolarFS vs. Native FS. PolarDB primarily relies on disaggregated
storage, particularly in the Alibaba public cloud, to achieve high
scalability and availability. The disaggregated storage in PolarDB is
implemented using our custom-designed PolarFS and PolarStore. To
evaluate the impact of PolarFS, we compare PolarDB’s performance
using PolarFS and a native file system (native-FS) while scaling the
number of nodes from 1 to 60, as shown in Figure 12. The results
indicate that PolarFS-based and native-FS-based PolarDB exhibit
similar throughput. This similar performance is achieved because
PolarFS leverages a lightweight user-space network and I/O stack,
which fully exploits RDMA, NVMe, and SPDK technologies.

5.3 Scale-up performance

We then use the Sysbench workload to evaluate the effectiveness
of our scale-up optimizations.

PolarIndex optimization. We first evaluate the performance
improvement brought by PolarIndex. Since the PolarIndex mainly
targets on the scenarios where has high-concurrent B+ tree struc-
ture modification operation (SMO), we use the Sysbench’s insert
workloads which involves the many SMO operations. To evaluate
the impact on the scaling up on modern many-core systems, we
configure the database instance with 88 vCPU cores. This test is
conducted in the Alibaba Cloud environment, as shown in Figure 13
and Table 2. We vary the number of client threads from 4 to 512 to

-#-w/o PolarIndex -e-with PolarIndex -#-w/o PolarIndex -@-with PolarIndex

N
P
S
®
=1
S

PS)
o
S
S

S
S
S

&
=
Avg. latency (ps)
P
s
=4

Throughput (K-QPS)
>
5
»
S
3

n
S

o
<

4 8 16 32 64 128 256 512 4 8 16 32 64 128 256 512
of threads # of threads

Figure 13: The performance improvement of PolarIndex

Table 2: The P95 latency (zs) with and without PolarIndex

of threads 4 8 16 32 64 128 256 512

w/o PolarIndex 9 12 51 176 457 1065 2269 4747

with PolarIndex 9 10 37 69 110 182 302 922

simulate different application pressures and measure throughput
and latency with and without the PolarIndex optimization. When
the workload pressure is light (fewer than 8 threads), the number of
concurrent SMOs remains low, meaning B+ tree concurrency is not
yet a bottleneck. In this scenario, PolarIndex delivers performance
similar to the native solution. However, as the workload pressure
increases, the number of concurrent insertions rises, leading to
frequent SMOs that make B+ tree concurrency the primary per-
formance bottleneck. In the native solution (without PolarIndex),
concurrent SMOs are not allowed, causing many requests to be
blocked. As a result, its throughput saturates beyond 8 threads
and even declines slightly with more threads due to increased con-
tention on B+ tree access. Correspondingly, its latency continues to
rise linearly as workload pressure increases. In contrast, PolarIndex
significantly improves performance. Even under high-concurrency
workloads (beyond 16 threads), throughput continues to scale, and
latency increases much more modestly compared to the native so-
lution. Ultimately, PolarIndex improves throughput by 1.96x, while
average latency is reduced by a factor of 2.93. Notably, the P95
latency is reduced by up to 7.5X. This substantial improvement
is attributed to PolarIndex’s ability to enable concurrent SMOs,
enhancing parallelism and minimizing lock contention, which is
crucial for scalability in modern many-core database.

PolarTrans optimization. Next, we evaluate the performance
improvements brought by PolarTrans, which is designed to opti-
mize transaction management under high-concurrency scenarios.
As database workloads scale up, contention in transaction manage-
ment can become a significant bottleneck, limiting overall system
throughput. PolarTrans addresses these issues by introducing a
highly optimized, lock-free transaction management mechanism,
reducing contention and improving concurrency efficiency. To eval-
uate its impact, we conduct tests on an 88-vCPU instance using Sys-
bench workloads that include read-write, insert, and point-update.
We configure the system with 512 client threads, a setting that
introduces high contention to stress-test the transaction manage-
ment subsystem. Figure 14 presents the throughput and latency
results under both configurations: with and without PolarTrans.
The results demonstrate that PolarTrans increases throughput by
26.47%-50.0% across the tested workloads, while also reducing
average latency by 21.3%-33.2% and P95 latency by 31.5%-55.7%.

250 PAwlo PolarTrans | K3 with PolarTrans
Awio PolarTrans K with PolarTrans :

Avg. latency

Throughput (K-QPS)

0 \ A ZN

. ate
point-update

Lasert
mser! ,‘“‘,“‘,d

read-write insert et

Figure 14: The performance improvement of PolarTrans

These improvements indicate that PolarTrans effectively alleviates
transaction processing bottlenecks, allowing the system to sustain
higher concurrency levels without performance degradation. Un-
like traditional transaction management designs, where contention
on a global active transaction list can cause severe performance
degradation under high-concurrency conditions, PolarTrans opti-
mizes transaction management and enables the lock-free operations.
Moreover, the improvements in P95 latency indicate that PolarTrans
not only enhances average performance but also provides a more
stable and predictable transaction processing experience, which is
crucial for latency-sensitive applications such as financial transac-
tions and high-frequency trading.

6 RELATED WORKS

In addition to prior work detailed in Section 2.1, we discuss other
relevant works in the following categories.

Primary-replica-based databases. The primary-replica-based ar-
chitecture is widely adopted by many databases, such as MySQL [47],
Aurora [58], Azure Hyperscale [16, 33], Azure Socrates [3]. This
architecture typically consists of a single primary node and one or
more replica nodes, where only the primary node handles write
operations, while replica nodes are limited to read requests. Al-
though modern servers offer hundreds of CPU cores, a single pri-
mary node can become a bottleneck in large-scale applications with
write-intensive workloads. Furthermore, some databases struggle
with scalability on many-core servers, limiting their ability to fully
utilize available hardware resources. To address these challenges,
multi-primary architectures have emerged, providing higher scala-
bility and improved performance by distributing operations across
multiple nodes. PolarDB not only introduces new designs to en-
hance scale-up capabilities but has also recently evolved towards
a multi-primary architecture, further improving scalability and
performance in cloud-native environments.

Multi-primary databases. The multi-primary database archi-
tecture is designed to enable scale-out capabilities and generally
follows two mainstream approaches: shared-storage and shared-
nothing. In the shared-storage-based multi-primary databases, such
as IBM DB2 Data Sharing [28], Oracle RAC [9], NonStop SQL [24],
Solar [71], Taurus MM [17], GaussDB [37], and PolarDB-MP [63],
all primary nodes access the same underlying storage, requiring
mechanisms to handle conflicts in data access while ensuring ACID
compliance for transactions. These solutions show better perfor-
mance in high-contention workloads at moderate scale, but face
challenges to scale to hundreds or thousands of nodes.

On the other hand, the shared-nothing architecture partitions the
entire database, ensuring that each primary node can only access its

assigned partition. When a transaction spans multiple partitions, a
distributed transaction protocol is required to maintain consistency.
This architecture is widely adopted by both key-value stores [32, 49]
and relational databases, such as CockroachDB [56], Spanner [14],
PolarDB-X [6], TiDB [25], TDSQL [12], and OceanBase [65]. These
systems are particularly well-suited for workloads that are natu-
rally partitioned with minimal data access conflicts across nodes.
While this approach provides high scalability, it often struggles
with the overhead introduced by distributed transaction processing.
PolarDB follows this architecture but incorporates highly optimized
distributed transaction mechanisms to significantly enhance both
scalability and performance.

Distributed transactions. Distributed transaction processing
has been extensively optimized over the decades. More recently,
several academic works have explored the use of RDMA to en-
hance performance in distributed transactions. Examples include
Tell [38], FaRM [19], FORD [68], DrTM[61] and DrTM-H [60], all
of which leverage RDMA to accelerate transaction execution in
main-memory databases. However, these approaches are primar-
ily designed for in-memory databases, which are not practical for
many OLTP workloads that typically involve terabytes or petabytes
of data and require persistence. On the other hand, solutions such
as SLOG [50], Calvin [57] primarily focus on cross-region database
clusters, where network latency is the primary bottleneck.

B-tree concurrency control. Efficient and robust concurrency
control mechanisms for B-tree indexes have long been a central
focus in both academia and industry, resulting in a variety of
techniques widely adopted in modern database systems. Notably,
ARIES/KV [42] and ARIES/IM [44] are pioneering works that sup-
port highly concurrent B-tree access. The B-link tree [34] is a classic
solution that enables concurrent access through right-sibling point-
ers and latch coupling, making it well-suited for high-concurrency
environments. More recently, researchers have proposed B-tree
variants optimized for emerging hardware technologies, such as
SSDs [35, 51] and persistent memory [11, 26, 67], as well as for
new deployment environments like disaggregated memory [59, 74].
Inspired by the B-link tree, PolarDB introduces PolarIndex, a new
concurrency control mechanism designed to enhance B tree per-
formance in general-purpose scenarios by supporting concurrent
structure modification operations (SMOs) with minimal contention.
However, PolarIndex’s implementation diverges from the original B-
link tree design due to the constraints of the existing InnoDB-based
codebase and practical considerations for production deployment,
as discussed earlier.

7 DISCUSSION

Since its launch in 2017, PolarDB has continuously evolved, tran-
sitioning from a primary-replica architecture to a multi-primary
distributed database. Along the way, we have made significant per-
formance improvements through numerous optimizations. Due to
space limitations, this paper focuses on some key new designs, such
as PolarIndex, PolarTrans, and the Polar2PC protocol. Throughout
PolarDB’s development, we have also explored various optimiza-
tions inspired by both academic and industrial solutions. However,
as a commercial product, we must consider important factors like
forward compatibility and stability. This means that while we aim

to incorporate the latest academic advancements, we also make
trade-offs to ensure minimal changes to the existing codebase and
maintain stability. While many academic solutions demonstrate sig-
nificant improvements in specific scenarios, they often come with
compatibility challenges or require invasive modifications to the
existing architecture, making direct adoption impractical. Adapting
such innovations for real-world deployment requires substantial
effort to ensure reliability, robustness, and integration with existing
systems. Given these challenges, we carefully balance performance
improvements with practical constraints, leading to the design of
new optimizations that maintain compatibility with previous imple-
mentations while delivering substantial performance gains. These
enhancements have been deployed in production for several years,
supporting hundreds of thousands of users in various applications.
Looking ahead, we will continue to push the boundaries of database
performance and scalability, not only by designing new solutions
but also by exploring how forward-thinking academic ideas can be
adapted for large-scale industrial applications, bridging the gap be-
tween theory and real-world deployment in cloud-native databases.

In addition to the scalability optimizations discussed in this pa-
per, PolarDB has also made several architectural advancements
that are crucial to its evolution. These include novel solutions for
high-performance, low-latency strongly consistent reads on replica
nodes [64], memory disaggregation to separate memory from CPU
resources [8, 52, 69], and the PolarDB Serverless [70] architecture.
These advancements have been detailed in previous publications,
but are not the focus of this paper. Nevertheless, they have played
a critical role in PolarDB’s evolution and represent significant con-
tributions to the development of cloud databases.

8 CONCLUSION

This paper presents the evolution of PolarDB over nearly a decade,
showcasing its transformation from a scale-up-optimized system
to a scale-out distributed database. To enhance scalability on many-
core servers, PolarDB introduces key optimizations for B+ tree in-
dexing and transaction management, achieving up to 1.96x through-
put improvement in high-concurrency workloads. As the demand
for scale-out capabilities has increased, PolarDB has evolved into
a highly scalable distributed database. To further enhance perfor-
mance, it optimizes the conventional Two-Phase Commit (2PC)
protocol with RDMA and co-designs it with an efficient transac-
tion management system. These advancements enable PolarDB to
achieve over 2 billion tpmC in the TPC-C benchmark, significantly
outperforming the second- and third-highest-ranking systems in
publicly available TPC-C results, demonstrating its superiority in
both performance, scalability and cost-effectiveness.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful comments
and constructive suggestions, which have helped improve the qual-
ity of this paper. We are deeply grateful to Jianying Wang, Ze Yang,
Ziqian Fan, Yicong Zhu, Ming Zhao, Ninglong Weng, Guoqiang
Xu, and Junwei Zhang for their support of this project. We also
thank all past and present members of the PolarDB team for their
dedication and continued contributions.

REFERENCES

(1]

=

[10]

(11

[12]

[15]

[16

[18

[19]

[20]

[21]

[22

[23]

2024. Huawei cloud-native relational database. https://www.huaweicloud.com/
intl/en-us/product/gaussdbformysql.html.

2025. TPC-C All Results. https://www.tpc.org/tpce/results/tpce_results5.asp.
Panagiotis Antonopoulos, Alex Budovski, Cristian Diaconu, Alejandro Hernan-
dez Saenz, Jack Hu, Hanuma Kodavalla, Donald Kossmann, Sandeep Lingam,
Umar Farooq Minhas, Naveen Prakash, et al. 2019. Socrates: The New SQL Server
in the Cloud. In Proceedings of the 2019 International Conference on Management
of Data. 1743-1756.

Claude Barthels, Ingo Miiller, Konstantin Taranov, Gustavo Alonso, and Torsten
Hoefler. 2019. Strong Consistency Is Not Hard to Get: Two-Phase Locking and
Two-Phase Commit on Thousands of Cores. Proceedings of the VLDB Endowment
12, 13 (2019), 2325-2338.

Eric Boutin and Steve Abraham. 2019. Amazon Aurora Multi-Master: Scaling Out
Database Write Performance. https://d1.awsstatic.com/events/reinvent/2019/
REPEAT 1_Amazon_Aurora_Multi-Master_Scaling_out_database_write_
performance_DAT404-R1.pdf.

Wei Cao, Feifei Li, Gui Huang, Jianghang Lou, Jianwei Zhao, Dengcheng He,
Mengshi Sun, Yinggiang Zhang, Sheng Wang, Xueqiang Wu, et al. 2022. Polardb-
x: An Elastic Distributed Relational Database for Cloud-native Applications.
In 2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE,
2859-2872.

Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng Zhu, Song Zheng, Yuhui
Wang, and Guoging Ma. 2018. PolarFS: an Ultra-low Latency and Failure Resilient
Distributed File System for Shared Storage Cloud Database. Proceedings of the
VLDB Endowment 11, 12 (2018), 1849-1862.

Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, Sheng Wang, Qingda Hu, Xun-
tao Cheng, Zongzhi Chen, Zhenjun Liu, Jing Fang, et al. 2021. PolarDB Serverless:
A Cloud Native Database for Disaggregated Data Centers. In Proceedings of the
2021 International Conference on Management of Data. 2477-2489.

Sashikanth Chandrasekaran and Roger Bamford. 2003. Shared Cache-the Fu-
ture of Parallel Databases. In Proceedings 19th International Conference on Data
Engineering (Cat. No. 03CH37405). IEEE Computer Society, 840-840.

Shimin Chen and Qin Jin. 2015. Persistent B+-trees in Non-volatile Main Memory.
Proceedings of the VLDB Endowment 8, 7 (2015), 786-797.

Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, and Jiwu Shu. 2020. uTree:
A Persistent B+-Tree with Low Tail Latency. Proceedings of the VLDB Endowment
13, 12 (2020), 2634-2648.

Yuxing Chen, Anqun Pan, Hailin Lei, Anda Ye, Shuo Han, Yan Tang, Wei Lu,
Yunpeng Chai, Feng Zhang, and Xiaoyong Du. 2024. TDSQL: Tencent Distributed
Database System. Proceedings of the VLDB Endowment 17, 12 (2024), 3869-3882.
Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen. 2016. Fast
and general distributed transactions using RDMA and HTM. In Proceedings of
the Eleventh European Conference on Computer Systems. 1-17.

James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. 2013. Spanner: Google’s Globally Distributed Database.
ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1-22.

Transaction Processing Performance Council. 1992. On-Line Transaction Pro-
cessing Benchmark. https://www.tpc.org/tpcc/.

Sudipto Das, Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija Jovanovic,
Vivek R Narasayya, Miodrag Radulovic, Maja Stikic, Gaoxiang Xu, and Surajit
Chaudhuri. 2019. Automatically Indexing Millions of Databases in Microsoft
Azure SQL Database. In Proceedings of the 2019 International Conference on Man-
agement of Data. 666-679.

Alex Depoutovitch, Chong Chen, Per-Ake Larson, Jack Ng, Shu Lin, Guanzhu
Xiong, Paul Lee, Emad Boctor, Samiao Ren, Lengdong Wu, et al. 2023. Taurus
MM: Bringing Multi-Master to the Cloud. Proceedings of the VLDB Endowment
16, 12 (2023), 3488-3500.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Miguel Castro, and Orion Hod-
son. 2014. FaRM: Fast Remote Memory. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). 401-414.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Edmund B Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. 2015. No Compro-
mises: Distributed Transactions with Consistency, Availability, and Performance.
In Proceedings of the 25th symposium on operating systems principles. 54-70.
CBACA Galakatos and Tim Kraska Erfan Zamanian. 2016. The End of Slow
Networks: It’s Time for a Redesign. Proceedings of the VLDB Endowment 9, 7
(2016).

Jian Gao, Qing Wang, and Jiwu Shu. 2025. ShiftLock: Mitigate One-sided RDMA
Lock Contention via Handover. In 23rd USENIX Conference on File and Storage
Technologies (FAST 25). 355-372.

Jim Gray and Andreas Reuter. 1992. Transaction Processing: Concepts and Tech-
niques. Elsevier.

Rick Greenwald, Robert Stackowiak, and Jonathan Stern. 2013. Oracle essentials:

Oracle Database 12c. " O’Reilly Media, Inc.".
Tandem Database Group. 1987. NonStop SQL: A Distributed, High-performance,

High-availability Implementation of SQL. In International Workshop on High

[25]

[26]

[27

[29

[30

[31

[32

@
&

[34

[35

[36

[37

[39

[40]

[41]

[42]

[43

Performance Transaction Systems. Springer, 60-104.

Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP
database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072-3084.
Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. 2018.
Endurable Transient Inconsistency in Byte-Addressable Persistent B+-Tree. In
16th USENIX Conference on File and Storage Technologies (FAST 18). 187-200.
IBM. 2025. Table and Index Management for Standard Tables. https://www.
ibm.com/docs/en/db2/11.5?topic=tables- table-index-management-standard.
"[accessed-March-2025]".

Jeffrey W. Josten, C Mohan, Inderpal Narang, and James Z. Teng. 1997. DB2’s
Use of the Coupling Facility for Data Sharing. IBM Systems Journal 36, 2 (1997),
327-351.

Alexey Kopytov. 2004. Sysbench: A System Performance Benchmark.
http://sysbench. sourceforge. net/ (2004).

Peter Kraft, Qian Li, Xinjing Zhou, Peter Bailis, Michael Stonebraker, Matei
Zaharia, and Xiangyao Yu. 2023. Epoxy: ACID Transactions Across Diverse Data
Stores. Proceedings of the VLDB Endowment 16, 11 (2023), 2742-2754.

Sandeep S Kulkarni, Murat Demirbas, Deepak Madappa, Bharadwaj Avva, and
Marcelo Leone. 2014. Logical Physical Clocks. In Principles of Distributed Systems:
18th International Conference, OPODIS 2014, Cortina d’Ampezzo, Italy, December
16-19, 2014. Proceedings 18. Springer, 17-32.

Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized Struc-
tured Storage System. ACM SIGOPS Operating Systems Review 44, 2 (2010),
35-40.

Willis Lang, Frank Bertsch, David J DeWitt, and Nigel Ellis. 2015. Microsoft
Azure SQL Database Telemetry. In Proceedings of the Sixth ACM Symposium on
Cloud Computing. 189-194.

Philip L Lehman and S Bing Yao. 1981. Efficient Locking for Concurrent Oper-
ations on B-trees. ACM Transactions on Database Systems (TODS) 6, 4 (1981),
650-670.

Justin J Levandoski, David B Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:
A B-tree for New Hardware Platforms. In 2013 IEEE 29th International Conference
on Data Engineering (ICDE). IEEE, 302-313.

Feifei Li. 2019. Cloud-native Database Systems at Alibaba: Opportunities and
Challenges. Proceedings of the VLDB Endowment 12, 12 (2019), 2263-2272.
Guoliang Li, Wengang Tian, Jinyu Zhang, Ronen Grosman, Zongchao Liu, and
Sihao Li. 2024. GaussDB: A Cloud-Native Multi-Primary Database with Compute-
Memory-Storage Disaggregation. Proceedings of the VLDB Endowment 17, 12
(2024), 3786-3798.

Simon Loesing, Markus Pilman, Thomas Etter, and Donald Kossmann. 2015. On
the Design and Scalability of Distributed Shared-data Databases. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data. 663-676.
Baotong Lu, Kaisong Huang, Chieh-Jan Mike Liang, Tianzheng Wang, and Eric
Lo. 2024. DEX: Scalable Range Indexing on Disaggregated Memory. Proceedings
of the VLDB Endowment 17, 10 (2024), 2603-2616.

Kai Lu, Siqi Zhao, Haikang Shan, Qiang Wei, Guokuan Li, Jiguang Wan, Ting Yao,
Huatao Wu, and Daohui Wang. 2024. Scythe: A Low-Latency RDMA-Enabled
Distributed Transaction System for Disaggregated Memory. ACM Transactions
on Architecture and Code Optimization 21, 3 (2024), 1-26.

Ross Mistry and Stacia Misner. 2014. Introducing Microsoft SQL Server 2014.
Microsoft Press.

C Mohan et al. 1989. ARIES/KVL: A Key-value Locking Method for Concurrency
Control of Multiaction Transactions Operating on B-tree Indexes. IBM Thomas J.
Watson Research Division.

Chandrasekaran Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and
Peter Schwarz. 1992. ARIES: A Transaction Recovery Method Supporting Fine-
granularity Locking and Partial Rollbacks Using write-ahead Logging. ACM
Transactions on Database Systems (TODS) 17, 1 (1992), 94-162.

C Mohan and Frank Levine. 1992. ARIES/IM: An Efficient and High Concurrency
Index Management Method Using Write-ahead Logging. ACM Sigmod Record 21,
2 (1992), 371-380.

C Mohan, Bruce Lindsay, and Ron Obermarck. 1986. Transaction Management in
the R* Distributed Database Management System. ACM Transactions on Database
Systems (TODS) 11, 4 (1986), 378-396.

NVIDIA. 2022. NVIDIA CONNECTX-7 NDR 400G INFINIBAND ADAPTER
CARD. https://www.nvidia.com/content/dam/en-zz/Solutions/networking/
infiniband-adapters/infiniband-connectx7-data-sheet.pdf. "[accessed-March-
2025]".

Oracle. 2025. MySQL. https://www.mysql.com/. "[accessed-March-2025]".
Kerry Osborne, Randy Johnson, Tanel Pdder, and Kevin Closson. 2011. Expert
Oracle Exadata. Springer.

Somasundaram Perianayagam, Akshat Vig, Doug Terry, Swami Sivasubrama-
nian, James Christopher Sorenson III, Akhilesh Mritunjai, Joseph Idziorek, Niall
Gallagher, Mostafa Elhemali, Nick Gordon, et al. 2022. Amazon DynamoDB: A
Scalable, Predictably Performant, and Fully Managed NoSQL Database Service.
In 2022 USENIX Annual Technical Conference (USENIX ATC 22). 1037-1048.

https://www.huaweicloud.com/intl/en-us/product/gaussdbformysql.html
https://www.huaweicloud.com/intl/en-us/product/gaussdbformysql.html
https://www.tpc.org/tpcc/results/tpcc_results5.asp
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Amazon_Aurora_Multi-Master_Scaling_out_database_write_performance_DAT404-R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Amazon_Aurora_Multi-Master_Scaling_out_database_write_performance_DAT404-R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Amazon_Aurora_Multi-Master_Scaling_out_database_write_performance_DAT404-R1.pdf
https://www.tpc.org/tpcc/
https://www.ibm.com/docs/en/db2/11.5?topic=tables-table-index-management-standard
https://www.ibm.com/docs/en/db2/11.5?topic=tables-table-index-management-standard
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/infiniband-adapters/infiniband-connectx7-data-sheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/infiniband-adapters/infiniband-connectx7-data-sheet.pdf
https://www.mysql.com/

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Kun Ren, Dennis Li, and Daniel J Abadi. 2019. SLOG: Serializable, Low-latency,
Geo-replicated Transactions. Proceedings of the VLDB Endowment 12, 11 (2019).
Hongchan Roh, Sanghyun Park, Sungho Kim, Mincheol Shin, and Sang-Won
Lee. 2011. B+-Tree Index Optimization by Exploiting Internal Parallelism of
Flash-Based Solid State Drives. arXiv preprint arXiv:1201.0227 (2011).

Chaoyi Ruan, Yinggiang Zhang, Chao Bi, Xiaosong Ma, Hao Chen, Feifei Li,
Xinjun Yang, Cheng Li, Ashraf Aboulnaga, and Yinlong Xu. 2023. Persistent
Memory Disaggregation for Cloud-native Relational Databases. In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3. 498-512.

Alex Shamis, Matthew Renzelmann, Stanko Novakovic, Georgios Chatzopou-
los, Aleksandar Dragojevi¢, Dushyanth Narayanan, and Miguel Castro. 2019.
Fast General Distributed Transactions with Opacity. In Proceedings of the 2019
International Conference on Management of Data. 433-448.

Dale Skeen. 1981. Nonblocking Commit Protocols. In Proceedings of the 1981
ACM SIGMOD international conference on Management of data. 133-142.

CAE Specification. 1991. Distributed Transaction Processing: the XA Specification.
X/Open.

Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, et al. 2020.
Cockroachdb: The Resilient Geo-distributed SQL Database. In Proceedings of the
2020 ACM SIGMOD international conference on management of data. 1493-1509.
Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip
Shao, and Daniel] Abadi. 2012. Calvin: Fast Distributed Transactions for Parti-
tioned Database Systems. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. 1-12.

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon aurora: Design considerations
for high throughput cloud-native relational databases. In Proceedings of the 2017
ACM International Conference on Management of Data. 1041-1052.

Qing Wang, Youyou Lu, and Jiwu Shu. 2022. Sherman: A Write-Optimized
Distributed B+ Tree Index on Disaggregated Memory. In Proceedings of the 2022
International Conference on Management of Data. 1033-1048.

Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. 2018. Deconstructing
RDMA-enabled Distributed Transactions: Hybrid is Better!. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). 233-251.
Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. 2015. Fast
in-memory Transaction Processing using RDMA and HTM. In Proceedings of the
25th Symposium on Operating Systems Principles. 87-104.

John Worsley and Joshua D Drake. 2002. Practical PostgreSQL. " O’Reilly Media,
Inc!.

[63]

[64]

[65]

[67]

o8]

[69]

[71]

[72]

(73]

(74]

Xinjun Yang, Yingqiang Zhang, Hao Chen, Feifei Li, Bo Wang, Jing Fang, Chuan
Sun, and Yuhui Wang. 2024. PolarDB-MP: A Multi-primary Cloud-native Data-
base via Disaggregated Shared Memory. In Companion of the 2024 International
Conference on Management of Data. 295-308.

Xinjun Yang, Yingqiang Zhang, Hao Chen, Chuan Sun, Feifei Li, and Wenchao
Zhou. 2023. PolarDB-SCC: A Cloud-Native Database Ensuring Low Latency for
Strongly Consistent Reads. Proceedings of the VLDB Endowment 16, 12 (2023),
3754-3767.

Zhenkun Yang, Chuanhui Yang, Fusheng Han, Mingqiang Zhuang, Bing Yang,
Zhifeng Yang, Xiaojun Cheng, Yuzhong Zhao, Wenhui Shi, Huafeng Xi, et al.
2022. OceanBase: A 707 Million tpmC Distributed Relational Database System.
Proceedings of the VLDB Endowment 15, 12 (2022), 3385-3397.

Erfan Zamanian, Carsten Binnig, Tim Kraska, and Tim Harris. 2016. The End
of a Myth: Distributed Transactions Can Scale. arXiv preprint arXiv:1607.00655
(2016).

Bowen Zhang, Shengan Zheng, Zhenlin Qi, and Linpeng Huang. 2022. NBTree:
A Lock-Free PM-Friendly Persistent B+-Tree for eADR-Enabled PM Systems.
Proceedings of the VLDB Endowment 15, 6 (2022), 1187-1200.

Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu. 2022. FORD: Fast One-sided
RDMA-based Distributed Transactions for Disaggregated Persistent Memory. In
20th USENIX Conference on File and Storage Technologies (FAST 22). 51-68.
Yingqgiang Zhang, Chaoyi Ruan, Cheng Li, Xinjun Yang, Wei Cao, Feifei Li, Bo
Wang, Jing Fang, Yuhui Wang, Jingze Huo, and Chao Bi. 2021. Towards Cost-
Effective and Elastic Cloud Database Deployment via Memory Disaggregation.
Proceedings of the VLDB Endowment 14, 10 (2021), 1900-1912. https://doi.org/10.
14778/3467861.3467877

Yingqiang Zhang, Xinjun Yang, Hao Chen, Feifei Li, Jiawei Xu, Jie Zhou, Xudong
Wu, and Qiang Zhang. 2024. Towards a Shared-Storage-Based Serverless Data-
base Achieving Seamless Scale-Up and Read Scale-Out. In 2024 IEEE 40th Inter-
national Conference on Data Engineering (ICDE). IEEE, 5119-5131.

Tao Zhu, Zhuoyue Zhao, Feifei Li, Weining Qian, Aoying Zhou, Dong Xie, Ryan
Stutsman, Haining Li, and Huiqi Hu. 2018. Solar: Towards a Shared-Everything
Database on Distributed Log-Structured Storage. In 2018 USENIX Annual Techni-
cal Conference (USENIX ATC 18). 795-807.

Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,

Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. ACM

SIGCOMM Computer Communication Review 45, 4 (2015), 523-536.

Tobias Ziegler, Jacob Nelson-Slivon, Viktor Leis, and Carsten Binnig. 2023. Design
Guidelines for Correct, Efficient, and Scalable Synchronization Using One-Sided
RDMA. Proceedings of the ACM on Management of Data 1, 2 (2023), 1-26.
Tobias Ziegler, Sumukha Tumkur Vani, Carsten Binnig, Rodrigo Fonseca, and
Tim Kraska. 2019. Designing Distributed Tree-Based Index Structures for Fast
RDMA-Capable Networks. In Proceedings of the 2019 International Conference on
Management of Data. 741-758.

https://doi.org/10.14778/3467861.3467877
https://doi.org/10.14778/3467861.3467877

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Database scale-up
	2.2 Database scale-out
	2.3 Opportunities with RDMA

	3 PolarDB Overview
	4 Implementation and Optimization
	4.1 PolarIndex
	4.2 PolarTrans
	4.3 RDMA-enabled distributed transaction
	4.4 High availability and crash recovery
	4.5 Practical experience with RDMA

	5 Evaluation
	5.1 Setup
	5.2 TPC-C testing
	5.3 Scale-up performance

	6 Related Works
	7 Discussion
	8 Conclusion
	Acknowledgments
	References

