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Abstract

Memory disaggregation has become a major trend in cloud-native
databases. However, most existing memory disaggregation solu-
tions suffer from read/write amplification, limited bandwidth, in-
efficient recovery, and challenges in data sharing. Fortunately, the
emerging CXL technology introduces new opportunities for mem-
ory disaggregation design in cloud-native databases.

To overcome these challenges, we leverage the CXL switch to
design PolarCXLMem, a CXL-switch-based disaggregated memory
system for cloud-native databases. To the best of our knowledge,
PolarCXLMem is the first CXL-switch-based disaggregated memory
system. Building on PolarCXLMem, we propose a novel instant re-
covery scheme, PolarRecv, which enables instant recovery and fast
buffer pool warm-up after a crash. To further support PolarCXLMem
in multi-primary databases, we design a new cache coherency pro-
tocol that facilitates data sharing between database nodes based on
PolarCXLMem. Finally, we evaluate PolarCXLMem with PolarDB, a
widely deployed cloud-native database, under various workloads.
This is the first study, to our knowledge, that investigates the per-
formance of CXL-based disaggregated memory in a commercially
deployed cloud-native database. Our evaluation shows that Polar-
CXLMem can improve throughput by up to 2.1X in pooling scenarios
and 1.55X in sharing scenarios compared to RDMA-based systems.

*Hao Chen is the corresponding author (ch341982@alibaba-inc.com).
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1 Introduction

Compute Express Link (CXL) has emerged as a promising solution
for low-latency, high-bandwidth interconnects in data centers, with
features like inherent cache coherency, native load/store support,
memory pooling/sharing across multiple hosts and devices [41, 42,
53], making it an attractive option in memory-intensive applica-
tions [21, 24, 31].

One area where CXL’s capabilities are especially transformative
is cloud databases, which have evolved from storage disaggrega-
tion towards memory disaggregation to enhance scalability and
resource utilization [13, 33, 46, 64]. However, existing RDMA-based
solutions face critical challenges such as limited bandwidth, higher
latency, limited concurrency [45, 55] and complexity in manag-
ing cache coherency [22, 45]. These limitations have driven the
need for more efficient interconnect technologies. The emergence
of CXL addresses these challenges by offering low-latency, high-
bandwidth connections with native cache coherency and memory
pooling/sharing support, significantly improving the performance
of cloud databases [6, 24, 31]. CXL’s ability to simplify memory
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pooling/sharing and enable large-scale memory disaggregation un-
locks new opportunities for optimizing cloud database architectures,
making it a promising solution for overcoming existing bottlenecks
in memory management and data processing.

This paper first reviews the use of RDMA-based disaggregated
memory in commercially deployed cloud-native databases and iden-
tifies the following limitations: (1) Disaggregated memory and
local memory are typically organized in a tiered structure, with
data transferred between them at the page level (typically 4-16
KB) [46, 64]. Even small data requests trigger the transfer of entire
pages, causing significant read/write amplification (up to dozens of
times, as shown in our evaluation). Additionally, maintaining a local
buffer pool increases memory overhead, and buffer pool misses lead
to frequent RDMA read/write operations, significantly reducing
performance. (2) During crash recovery, while the database follows
its usual recovery logic, it reduces storage I/O costs when the re-
quired pages reside in disaggregated memory. However, the overall
recovery process still takes considerable time, as the disaggregated
memory is not leveraged to optimize the recovery scheme itself and
still relies on the ARIES-style recovery policy. (3) Disaggregated
memory systems are predominantly based on RDMA networks.
While RDMA offers substantial improvements over TCP/IP, it faces
challenges under high concurrency. Bottlenecks often arise from
RDMA NICs, such as implicit contention on doorbell registers and
cache thrashing [45, 55]. (4) When disaggregated memory is used
for data sharing in multi-primary databases [33, 58], the database
must manage its own cache coherency mechanisms, which adds
overhead and limits performance.

To overcome these limitations, we leverage the world’s first CXL
switch [50] to design a CXL-switch-based disaggregated memory
architecture, named PolarCXLMem. To the best of our knowledge,
PolarCXLMem is the first CXL-switch-based disaggregated memory.
PolarCXLMem is specifically optimized for cloud-native databases,
addressing the limitations of RDMA-based solutions by providing
high performance, cost-effectiveness, instant recovery, and efficient
data sharing. In our design, we argue that with CXL, there is no need
for a tiered memory structure. Compared with RDMA, CXL offers
sufficient speed and supports native memory load/store instruc-
tions, allowing it to directly store all buffered pages. This design
eliminates the read/write amplification caused by page copying in
tiered structures, saving bandwidth resources. Meanwhile, elimi-
nating the local buffer avoids the local memory overhead and saves
costs. DRAM, which has limited scalability, constitutes a significant
portion of hardware expenses [48]-accounting for 50% of server
costs in Azure [1] and 40% of rack costs at Meta [41]. Additionally,
this approach simplifies the system design with minimal modifi-
cations to the existing architecture, preserving system stability—a
critical factor for commercially deployed systems. Our evaluation
shows that storing pages in CXL memory achieves performance on
par with local memory.

Building on PolarCXLMem, we propose a novel instant recovery
scheme, PolarRecv. In PolarRecv, we move the entire buffer pool,
including both data and metadata, to CXL memory. With CXL’s
low latency and support for load/store instructions, the database
can directly operate on the buffer pool’s data and metadata without
requiring changes to the database logic. After a database crash, the
buffered data and its metadata remain intact in CXL memory. By
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designing a tailored recovery policy, we can restore the buffered
data to a consistent state from CXL memory, bypassing the heavy
conventional recovery process and significantly improving recovery
performance.

Furthermore, we adapt PolarCXLMem for data sharing in a multi-
primary database. Since CXL 3.0 devices, which inherently support
cache coherency, are not yet available, we design a new cache co-
herency protocol. Existing RDMA-based cache coherency schemes
in multi-primary databases [58] synchronize data at page-level gran-
ularity, resulting in significant read/write amplification and high
latency. Additionally, invalidation messages rely on the RDMA net-
work, which is less efficient. In contrast, our proposed CXL-based
cache coherency protocol synchronizes data at the cache line (64B)
granularity, minimizing synchronization overhead. Invalidation
messages utilize the low-latency CXL interface, further reducing
latency and improving efficiency.

Finally, we implemented a CXL-based disaggregated memory
using the CXL 2.0 switch in a commercially deployed cloud-native
database, accommodating both single-node and multi-primary con-
figurations. We evaluated and analyzed our design using various
synthetic and real-world workloads.

We summarize our main contributions as follows:

e We conducted a comprehensive review of existing RDMA-based
disaggregated memory designs and identified their key limita-
tions. To address these challenges, we designed and implemented
a CXL-switch-based disaggregated (shared) memory system for
cloud-native databases, supporting both memory pooling and
data sharing scenarios.

e We proposed a novel database recovery scheme, PolarRecv, based
on PolarCXLMem, which substantially enhances recovery per-
formance. To the best of our knowledge, this is the first work to
utilize CXL memory for improving database recovery efficiency.

o We adapted PolarCXLMem for data sharing in a commercially
deployed multi-primary database and designed a new data syn-
chronization protocol for multi-primary databases based on Po-
larCXLMem.

o We thoroughly evaluated PolarCXLMem and PolarRecv in the
widely deployed commercial cloud-native databases under vari-
ous workloads.

This paper is structured as follows. First, we present the background
and motivation in Section 2. Then we provide the PolarCXLMem’s
design and implementation in Section 3. Next, we evaluate it in
Section 4 and review the related work in Section 5. Finally, we
conclude the paper in Section 6.

2 Background and motivation

2.1 CXL introduction

CXL is an interconnect technology for high-speed, low-latency
communication between host processors and peripheral devices.
CXL has evolved significantly across its three major versions, each
enhancing its capabilities and flexibility. CXL 1.0 [15], introduced
in 2019, laid the foundation with support for three key protocols:
CXL.io for I/O operations, CXL.cache for caching semantics, and
CXL.mem for memory access semantics. These protocols enable
low-latency, high-bandwidth communication between host proces-
sors and accelerators, focusing on coherent memory access and
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device discovery. CXL 2.0 [16], released in 2020, introduced memory
pooling to enable multiple hosts to share memory resources and
added switching capabilities to improve scalability. CXL 3.0 [17],
launched in 2022, further extended these features with innova-
tions such as multi-level switching, dynamic capacity devices, and
support for fabric-based topologies, delivering greater memory
scalability, improved disaggregation, and flexible memory sharing
across hosts.

Hardware availability. CXL remains a nascent technology, with
most products still in the prototype stage and only limited sam-
ples available. Due to the scarcity of mature CXL hardware, cur-
rent research on CXL devices often faces significant limitations.
Many studies either focus solely on use cases without experimental
validation [10, 11, 24, 31], rely on emulation [34, 36, 53], which
fails to accurately capture the true characteristics of CXL, or use
internal memory expander samples based on CXL 1.0 for evalua-
tion [6, 41, 49]. A few works [39, 62] explored memory sharing with
early-stage FPGA-based hardware without a CXL switch support.
These prototypes also face limitations, including lower performance
and smaller capacities. For example, the FPGA-based sample used
in CXL-SHM [62] supports only two nodes and provides a few hun-
dred GBs of memory. To date, most existing works are restricted to
CXL 1.0 and have limited focus on memory pooling and sharing. In
contrast, our work leverages a state-of-the-art, commercial-grade
CXL 2.0 switch, which supports terabyte-scale memory and allows
us to explore the full potential of memory disaggregation (e.g.,
pooling and sharing) in a real-world environment.

Compared with RDMA. RDMA has been widely adopted for
memory disaggregation [12, 45, 47]. In particular, in the database
domain, RDMA is extensively employed to accelerate distributed
transaction processing [14, 20, 27, 28, 54-56, 61], optimize data-
base indexing on remote memory [37, 38, 51, 68], extend local
buffers [13, 46, 64], enable memory pooling and sharing [58], and
accelerate message transmission [59]. While many of RDMA’s fea-
tures resemble those of CXL Type 3 devices, CXL offers several
advantages over RDMA, and existing RDMA-based research cannot
be directly adapted to CXL. The key advantages of CXL include:

e (1) Low latency: CXL connects the host to device-attached mem-
ory via PCle, whereas RDMA requires protocol interface conver-
sions between InfiniBand and PCle. CXL can also translate mem-
ory store/load requests from the last-level cache into CXL flits
(Flow Control UnIT), while RDMA relies on DMA to read/write
memory data, making it slower [22]. DirectCXL reports that CXL
is 8.3x faster than RDMA for reading 64 bytes of data [22].

® (2) Load/store support: CXL natively supports load/store instruc-

tions, allowing direct access to CXL memory. In contrast, with

RDMA-based systems, applications must first read data from the

remote memory into local memory, process it locally, and then

write the updated data back to the remote memory. This addi-
tional step adds significant overhead. In a CXL-based system, the

CPU can directly access and process data in the CXL memory

without this intermediate step, and the CPU cache can further

enhance memory access performance.

(3) Simplicity: RDMA relies on specialized interfaces and drivers

for access, introducing programming complexity. Additionally,

RDMA requires developers to possess deep expertise to design
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high-performance systems that effectively leverage its capabil-
ities. In contrast, CXL offers a transparent memory space for
applications, significantly simplifying development and usage.

e (4) Cache coherency: CXL 3.0 supports hardware-based cache
coherency across memory and devices attached to multiple hosts,
unlike RDMA. This feature opens up new opportunities for mem-
ory sharing across systems.

2.2 Memory disaggregation in cloud databases

Databases typically manage physical data in storage at the granu-
larity of pages and cache a subset of these pages in a memory buffer
pool to improve performance. During transactions, the transaction
engine retrieves required pages from the buffer pool and accesses
the data through pointers provided by the buffer pool. The buffer
pool operates transparently, allowing the transaction engine to
function without awareness of its design.

Memory disaggregation has gained significant attention, particu-
larly in the database domain [8, 13, 33, 58, 64]. Since the buffer pool
constitutes the primary use of memory, databases often extend its
capacity into disaggregated memory to accommodate more data,
thereby reducing costly storage I/O operations. Moreover, as the
buffer pool operates independently of other database components,
extending it into disaggregated memory can be achieved transpar-
ently, enhancing design flexibility. This approach is widely adopted
in commercial databases [13, 64]. In contrast, some academic ef-
forts [35, 37, 38, 51, 60] explore a co-design of the transaction engine
and disaggregated memory. However, these innovations have not
yet been widely implemented in commercial products, requiring
substantial effort to transition into production environments. Con-
sequently, this work primarily focuses on leveraging disaggregated
memory for the database’s buffer pool.

In RDMA-based systems, the CPU cannot access remote memory
via RDMA as transparently as it accesses local memory, requiring
data to be fetched to local DRAM and processed locally. Addition-
ally, RDMA operations are still much slower than local DRAM
access, necessitating the use of a local buffer pool (LBP) to maintain
performance. The LBP and remote memory are typically organized
in a tiered memory structure. While RDMA access is significantly
faster than traditional storage I/Os and can improve performance,
this design still faces several limitations:

e (1) Read-write amplification. In current designs, databases
store pages in disaggregated memory and transfer data at the
page granularity. This approach leads to inefficiencies: even when
only a small portion of data is required, the entire page must be
read, and modifying a small part of a page requires writing back
the full page. These operations result in significant read/write
amplification, consuming substantial RDMA bandwidth—a criti-
cal resource for cloud databases. Figure 1 illustrates the impact
of LBP size on database throughput and RDMA bandwidth. The
evaluation was conducted on PolarDB (a widely deployed data-
base on Alibaba Cloud) with 16 vCPUs with RDMA-based dis-
aggregated memory [13, 64] under Sysbench point-select and
read-write workloads. The LBP size was varied from 10% to 100%
of the disaggregated memory. When the LBP size is set to 100%,
disaggregated memory is not used, and the database operates
entirely on local DRAM. This evaluation reveals that with an
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Figure 1: Impact of LBP size in RDMA-based systems.

LBP size of 10%, RDMA bandwidth utilization reaches 6.9 GB/s
and 3.9 GB/s under two workloads, consuming up to 57% of a
ConnectX-6 NIC’s 12 GB/s bandwidth, despite utilizing only 8.3%
of CPU resources on a 192 vCPU host. Increasing the LBP size to
50% reduces RDMA bandwidth usage to 3.8 GB/s and 2.2 GB/s, re-
spectively, which, while lower, remain considerable. Additionally,
this bandwidth reduction comes with a 50% memory overhead,
significantly raising the total cost. These findings highlight the
high RDMA bandwidth consumption inherent in such systems
and reveal the trade-offs in RDMA-based designs, where increas-
ing the LBP size can alleviate bandwidth pressures but sacrifices
cost-efficiency in cloud environments. However, running the
database directly on CXL memory eliminates these issues and
avoids the LBP overhead.

(2) Inefficient recovery. After a database crash, disaggregated
memory retains some data pages. Reading these pages from dis-
aggregated memory can reduce storage I/0O, improving recovery
performance, as discussed in previous works [33, 64]. However,
disaggregated memory is typically only used to accelerate page
I/O during recovery. The database must still manage its recovery
logic and restore certain in-memory data, such as buffer pool
metadata and locally buffered data, which can take considerable
time. Storing metadata on disaggregated memory via RDMA is
impractical due to RDMA’s high latency. However, CXL’s low
latency opens up new possibilities for redesigning database re-
covery schemes using disaggregated memory.

(3) RDMA bottleneck. In RDMA-based disaggregated memory
architectures, the RDMA driver can become a performance bottle-
neck. Previous evaluations [45] show that existing IOPS-bound
disaggregated applications do not scale well beyond 32 cores,
hindering the effective utilization of modern many-core systems.
This is due to limitations in RDMA NICs, such as implicit con-
tention on doorbell registers and cache thrashing [45, 55]. CXL,
which supports load/store memory semantics via the PCle inter-
face, can eliminate these bottlenecks.

(4) Lack of cache coherency. The practice of sharing disaggre-
gated memory across multiple database nodes is becoming more
prevalent [33, 58]. However, due to the lack of cache coherency
between nodes, databases are required to implement their own
cache coherency mechanisms. For instance, in PolarDB-MP [58],
after a node modifies a page in its local buffer and pushes it to
disaggregated memory, it must invalidate copies in other nodes’
local buffers to maintain cache coherency. This process incurs
additional overhead. Fortunately, the CXL 3.0 protocol natively
implements cache coherency, removing this overhead from the
application layer and improving overall performance.
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Top of Rack
O CT
‘ CPU  Memory Storage | [ || <=
CDFP cable
enmaoices | W L =/ Y
-
XL switch CPU__ Memory Storage
] =7
i T 2a
) Memory devices CPU___Memory Storage
CXL switch
[seesiesesisess| |
OSFPS6 cable ~{ CXL switch }> -«
Hosts 7
(FEERE] | R el
4\“ /) Memory devices .

Figure 2: The physical topology of CXL-enabled cluster.

2.3 Characteristics of CXL switch

This paper employs the XConn CXL switch [50] for the evalua-
tion, the world’s first CXL 2.0 switch, supporting up to 256 lanes
with a total switching capacity of 2TB/s. The left panel of Figure 2
shows our in-house built physical prototype rack, which integrates
two CXL switch-enabled clusters, each connected to memory de-
vices and hosts. The right panel illustrates the topology of a single
CXL switch system, where both the CXL switch and memory de-
vices operate with independent power supply units. In multi-socket
servers, when the CXL switch is connected to one socket, CPUs on
other sockets may experience higher latency when accessing CXL
memory. Table 1 compares the latency of DRAM and CXL memory
access, measured using the Intel MLC tool [3]. Additionally, we
juxtapose the latency of directly accessing CXL memory without
the switch, used in most existing works. Without the switch, the
latency of CXL is comparable to remote DRAM access, aligning
with prior claims [9, 34, 36, 53]. However, deploying the CXL switch
introduces additional latency. For local NUMA node access, CXL
latency is 3.76x that of DRAM; for remote NUMA access, it is 2.82X.
Even when comparing remote DRAM access with local CXL access,
CXL latency is still 2.38x higher than DRAM. As this paper focuses
on memory pooling and sharing based on CXL memory, the use
of the CXL switch is essential for these scenarios. All subsequent
discussions in this paper are based on the CXL switch. From our
evaluation, the additional latency introduced by the CXL switch
proves to be negligible in cloud database scenarios.

Table 1: Access latency comparison between DRAM and CXL

DRAM CXL w/o switch | CXL w. switch
Local | Remote | Local | Remote | Local | Remote
Latency (ns) 146 231 265.2 345.9 549 651

Table 2: Data transfer latency of RDMA vs CXL

Size Write latency (us) Read latency (us)

RDMA CXL RDMA CXL
64B 4.48 0.78 4.55 0.75
512B 4.69 0.84 4.79 0.85
1KB 4.77 0.88 491 1.07
4KB 5.06 1.02 5.58 1.86
16KB 6.12 1.68 7.13 2.46

Data transfer of RDMA vs CXL. Data transfers between local
and remote memory in RDMA-based systems are common. Ta-
ble 2 shows latency comparison between RDMA and CXL for data
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Figure 3: Performance comparison of DRAM-based vs. CXL-
based buffer pool in the database.

transfers, including writes (local DRAM to remote memory) and
reads (remote memory to local DRAM). For small data sizes, CXL
demonstrates significant advantages over RDMA, reducing latency
by 5.74x for writes and 6.07x for reads at 64B. However, as the
data size increases to 16KB, CXL’s latency rises more substantially
than RDMA’s. RDMA’s latency is less sensitive to data size due to
its fixed overhead, e.g., network RTT, protocol handling, and NIC
memory access, while CXL latency grows with data size due to lim-
ited CPU load/store buffer depth. For instance, increasing the data
size from 64B to 16KB only increases RDMA latency by 36.61% and
56.70%, whereas CXL’s latency increases by 1.15% for writes and
2.28x for reads. These findings motivate us to consider load/store
instructions for direct memory accesses and eliminate the local
buffer completely, instead of copying data from the remote memory
to the local buffer. Directly accessing data on CXL memory is much
faster than with RDMA, making it a feasible option to run databases
directly on CXL memory. Moreover, databases often require only a
portion of a page during a transaction processing, eliminating the
need to transfer entire pages. Additionally, CPU caching further
enhances performance when directly accessing CXL memory.

Database performance on CXL. Copying data pages from CXL
memory to local DRAM introduces significant latency. Although
CXL latency is higher than DRAM, it is much faster than RDMA,
and CPU caching mitigates the latency impact. Additionally, data-
base buffer pool operations are more sensitive to bandwidth than
latency. These factors motivate our approach to directly running
the database on CXL memory. To further prove this, we implement
a CXL-based buffer pool (CXL-BP) in PolarDB to enable direct CXL
memory access and bypass local DRAM buffering, and compare its
performance with DRAM-based buffer pool (DRAM-BP), as shown
in Figure 3. In our test, each physical host has 192 vCPUs and
supports up to 12 database instances, with each instance config-
ured with 16 vCPUs. We varied the number of instances from 1 to
12 to evaluate whether CXL-BP could fully utilize the 192 vCPUs
and achieve throughput comparable to DRAM-BP. We tested three
Sysbench workloads: point-select, range-select, and read-write. De-
tailed configurations are described in Section 4. Figure 3 shows that
in the point-select workload, CXL-BP achieves comparable perfor-
mance to DRAM with no signs of bottlenecks, showing only a 7%
throughput difference at the maximum scale of 12 instances. In the
range-select workload, CXL demonstrates similar performance (ap-
proximately 10% lower) for 1 to 8 instances. Beyond 9 instances, the
network becomes the bottleneck due to the volume of query results
returned to the client, resulting in similar performance for both
CXL-BP and DRAM-BP. For the read-write workload, the through-
put difference remains within 7% for up to 11 instances. With more
than 11 instances, WAL persistency becomes the system bottle-
neck, and both DRAM-BP and CXL-BP exhibit similar performance.
In summary, using CXL as the buffer pool in databases results in
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only minor performance drops or none in some scenarios. These
results encourage us to rethink disaggregated memory designs with
CXL in databases, moving away from the tiered memory structure
commonly used in RDMA-based solutions [64].

3 Design and Implementation
3.1 PolarCXLMem

Overview. PolarCXLMem shares a similar architecture with RDMA-
based disaggregated memory. The key difference is that the database
constructs its buffer pool, including both data pages and metadata,
directly on CXL memory. Local DRAM is reserved for variables
and other transaction engine-related data structures. As shown
in Figure 4, all hosts running the database instance, along with
the CXL memory devices, are connected to the CXL switch. The
database instance can transparently access CXL memory using
native load/store instructions, as if it were accessing local DRAM.

CXL Memory allocation. Although the CXL 2.0 switch natively
supports memory pooling, the CXL 2.0 driver is not yet fully up-
streamed. Therefore, we utilize the EFI_MEMORY _SP attribute 2]
set by the BIOS. On each host connected to the CXL switch, we
configure the CXL-attached memory as a dax device in device direct
access (devdax) mode using daxctl, enabling easy access via mmap.
In this setup, we designed a CXL memory manager to support
multi-tenancy, preventing multiple nodes from accessing the same
memory region. The manager allocates memory for each node, en-
suring that no two nodes access overlapping CXL memory. When
a node requests CXL memory, it communicates with the manager
via RPC, specifying the required memory size. The manager then
returns an offset for the allocated memory, allowing the node to
use memory starting from that offset. Since the CXL memory for
the buffer pool is only allocated once during database startup, the
memory allocation overhead has no impact during runtime.

CXL-based buffer pool. During database startup, the database
instance calculates the memory required for the buffer pool and
allocates CXL memory from the CXL memory manager. After re-
ceiving the offset, the database instance uses mmap to map the CXL
dax device at the specified offset. The allocated CXL memory is
logically divided into blocks, with each block storing a database
page and its corresponding metadata. These blocks are managed
through two linked lists: a free list, representing blocks that are
available, and an in-use list, representing blocks already in use for
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database pages. When the transaction engine requests a page, if the
page is in the in-use list, the data pointer is returned directly to the
transaction engine. If not, a block from the free list is assigned, an
I/O operation is performed to load the page into memory, and the
data pointer is returned. The transaction engine can then operate on
the data pointer without needing to know whether it points to local
DRAM or CXL memory. This design minimally impacts the trans-
action engine, requiring only a few modifications during memory
allocation, thereby preserving system stability and compatibility.

Avoiding Tiered Memory. In PolarCXLMem, we eliminate the
tiered memory structure commonly used in many RDMA-based
disaggregated memory systems [25, 46, 64]. Although CXL memory
is slower than local DRAM, it is already fast enough for the buffer
pool. In Section 2.3, we investigated the impact of memory speed on
overall performance and found that placing the buffer pool directly
on CXL memory provides nearly the same performance as using
local DRAM. Therefore, a tiered memory structure is unnecessary
with CXL-based disaggregated memory, which also simplifies the
system design, minimizes modifications to the existing architecture,
and enhances system stability. Moreover, tiered memory designs
transfer data at the page granularity between memory levels. As a
result, accessing small amounts of data can trigger the movement
of entire pages, leading to read/write amplification and wasting
bandwidth. Additionally, maintaining an extra local DRAM-based
buffer pool incurs higher costs.

Physical topology. Figure 5 depicts the physical topology of a
PolarCXLMem deployment. This setup includes two CXL switches
housed in a single switch box. A controller connects to these switches,
enabling servers to send control messages via Ethernet for configu-
ration and management. The switches are connected via CXL x16
lanes to memory devices organized in a CXL memory box, which
supports up to 16TB of memory, forming a pool of the same capac-
ity. Each CXL switch, along with its connected memory, constitutes
an independent memory pool that can be accessed by servers. This
example demonstrates a deployment with two CXL-based memory
pools, showcasing the scalability and flexibility of the system.

3.2 Instant recovery on PolarCXLMem

The CXL switch has an independent power supply unit (PSU). When
a host goes down, the data in CXL memory remains intact. We can
utilize the CXL-based disaggregated memory to achieve the instant
recovery since the main purpose of the database crash recovery is
to recover the buffered data pages. Thus, we propose the instant
recovery scheme, PolarRecv, based on PolarCXLMem.
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Challenges. Before diving into our design, we first review the pro-
cess of database recovery after a crash, why RDMA-based disaggre-
gated memory cannot support instant recovery, and the associated
challenges. In most databases, each update generates corresponding
redo logs. Upon committing a transaction, the database writes these
redo logs to persistent storage without flushing the modified page
itself. After a crash, the modified pages in the buffer are lost. During
recovery, the system scans redo logs from the latest checkpoint on-
ward, reading corresponding pages from storage and applying logs
to rebuild pages in the buffer. This process ensures that pages reflect
all changes made before the crash, allowing the database to resume
serving applications. Meanwhile, the rollback of uncommitted trans-
actions can occur simultaneously with application requests. When
using the RDMA-based disaggregated memory, the latest versions
of pages are not retained in disaggregated memory, as pages are
updated locally in the buffer. Therefore, after a crash, the recovery
process must scan all redo logs, retrieve pages from disaggregated
memory or storage, and apply these logs [33, 64]. Additionally,
since the buffer is not immediately restored, it requires a warm-up
period after recovery, meaning applications need additional time
to reach pre-crash peak throughput.

In contrast, PolarCXLMem allows the database to operate directly
on CXL memory. As a result, after a crash, CXL memory retains all
the latest updates, enabling us to initialize the buffer pool structure
directly from CXL memory. However, because other in-memory
data structures, such as thread contexts, are lost during a crash,
the database cannot simply restart based on CXL memory alone.
There are additional issues that must be addressed to enable instant
recovery: (1) The LRU list may be inconsistent after a crash if
the crash occurred during the movement of an LRU node. In this
case, the system needs to detect this issue and rebuild the LRU list
during recovery. (2) If a crash happens during structure modification
operations (SMOs) in the B-tree, such as page splitting or merging,
the B-tree structure may be inconsistent. The system must restore
the B-tree to a consistent state during recovery. (3) When a crash
occurs during a page update, the page may be left in a partial state,
preventing reliable database operation. Page atomicity must be
guaranteed. (4) Since the redo log buffer still uses local DRAM, any
logs not flushed to storage at the time of the crash will be lost.
This could result in an updated page being present after recovery
without corresponding redo logs, which violates the ARIES-style
logging scheme. To maintain consistency, it’s essential to avoid
situations where there are ‘too new’ pages without associated logs.

PolarRecv design. PolarRecv is built on PolarCXLMem, where
the database directly utilizes disaggregated CXL memory as the
buffer pool. To recover the buffer pool structure after a crash, we
also store metadata for each page in CXL memory. We organize
each page’s data and metadata within a structure called a block, as
shown in Figure 4. The id field represents the page ID, and lock_state
indicates whether the page is currently locked for updating. The
prev and next fields are used for the double-linked list managed
by the LRU policy, while Isn stores the latest log sequence number
corresponding to the page.

In most databases, a page’s write or read lock must be acquired
before it is updated or read, so we store the lock state in CXL
memory. During recovery, we scan each page’s lock state. If a page
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is write-locked, it may have been in the middle of an update when
the crash occurred, potentially leaving it in a partial state. In such
cases, we must recover the page from the redo logs rather than
using the potentially incomplete page directly.

During a B-tree SMO, the process is protected by a mini-transaction,
with the corresponding page locked using a two-phase locking pol-
icy. In this case, the locks on related pages involved in the SMO
are only released upon the completion of the mini-transaction. Fur-
thermore, redo logs are typically flushed to storage only after the
mini-transaction is committed. During recovery, if a page is found
to be write-locked, we apply the redo logs to restore it rather than
directly using the version in CXL memory. Therefore, if a crash oc-
curs during an SMO, we can still identify the related pages involved
in the incomplete SMO’s mini-transaction, recover them from the
redo logs, and maintain B-tree consistency.

In the recovery process, PolarCXLMem first retrieves the maxi-
mum LSN from the persistent redo logs. When scanning pages in
CXL memory, it checks both the lock state and the LSN field of
each page. If a page’s LSN is greater than the maximum LSN in the
persistent redo logs, PolarCXLMem rebuilds the page by applying
the redo logs instead of using the version in CXL memory. This
approach ensures that we do not use a version of the page that
lacks corresponding redo logs.

To ensure LRU consistency, we use a lock state in CXL memory
to indicate any modifications. Changes to the LRU structure are
protected by a mutex lock, with the lock state also stored in CXL
memory. When recovering, this lock state is checked to determine
if the LRU structure was being modified at the time of the crash. If
it was, the LRU list is rebuilt; otherwise, PolarCXLMem can directly
use the existing LRU list.

3.3 CXL-based data sharing on PolarCXLMem

Data sharing has been a popular trend in cloud-native multi-primary
databases [19, 33, 58]. Using PolarCXLMem for data sharing opens
new opportunities to enhance performance compared to RDMA-
based solutions [58]. Since CXL 3.0 switches with inherent cache
coherency are not yet available, we design a new cache coherency
protocol for the CXL 2.0-based disaggregated memory.

Overview. Figure 6 illustrates the design of data sharing in a
multi-primary database based on PolarCXLMem. Similar to PolarDB-
MP [58], we employ a buffer fusion server to manage the metadata
of the distributed buffer pool (DBP). The buffer fusion server allo-
cates memory from PolarCXLMem, the disaggregated CXL memory.
The CXL memory is organized at the page level, with each page
storing a single unit of data. Pages are managed using an LRU
policy. Initially, all pages are stored in a free list. During runtime,
pages are allocated from the free list and moved to the in-use list.
A background thread dynamically moves the least recently used
pages from the in-use list back to the free list to free space for
new pages. On the database side, each buffer pool maintains a set
of pages but stores only the CXL memory addresses of the pages
rather than the pages themselves. For each page, the system also
tracks two additional fields: invalid and removal. The invalid flag
ensures cache coherency by indicating whether a page has been
modified by another node, requiring the current node to invalidate
its CPU cache. The removal flag manages the LRU policy on the

SIGMOD-Companion ’25, June 22-27, 2025, Berlin, Germany

T e o it Page metadata buffer _110de-N
ID |data addr|invalid [removal ID |data addr{invalid [removal
100] 0x11b2 1 1 oo [100f 0x11b2 1 1
200| 0x22f3 1 0 200| 0x22f3 0 0

Buffer fusion DBP metadata
ID |data addr | active nodes |invalid addr | removal addr
100 | 0x11b2 [1,2] [0x11,0x22]| [0x11,0x22]

200 | 0x22f3 [1,2] [0x33,0x44]| [0x33,0x44]

CXL memory

in-use Iis‘t- -
e it s Jer 102
page 1 | page 2 | | | page n
2

l Disaggregated CXL memory (PolarCXLMem) l

Figure 6: Data sharing based on PolarCXLMem.
buffer fusion side. If the buffer fusion server moves a page from the
in-use list to the free list, it resets the removal flag across all nodes.

Workflow. On the database side, a hash table is initially allocated
to manage the page metadata buffer. The hash table uses the page ID
as the key, while the values consist of the corresponding metadata,
including data_addr (the page’s CXL address allocated by the buffer
fusion server), invalid and removal. The invalid and removal fields
are stored in CXL memory and can be updated by the buffer fusion
server when the page state changes.

Initially, these metadata records are free and stored in a free list.
When the database requests a new page that cannot be found in the
local page metadata buffer, it allocates a free metadata record from
the free list and sends an RPC to the buffer fusion server, providing
its invalid and removal CXL addresses. If the requested page already
exists in the buffer fusion server’s in-use list, the server returns its
CXL address to the database. Otherwise, the server allocates a page
from its free list, updates the page’s metadata, adds the requesting
node to the active list, and records the corresponding invalid and
removal fields. Once the database node receives the page’s CXL
memory address from the buffer fusion server, it stores the address
in its local page metadata buffer.

If the requested page is found in the local page metadata buffer,
the database first checks the removal flag. If the flag is set, it indicates
that the page’s CXL address has been recycled by the buffer fusion
server. In this case, the database cannot use the page directly and
must request a new address from the buffer fusion server via RPC.
Afterward, the invalid flag is checked to determine whether the
page has been modified by another node. If the invalid flag is set,
the database invalidates the CPU cache for this page to ensure
consistency. Subsequent accesses to the page will read directly
from the CXL memory device to obtain the latest version.

Cache coherency. Since the CXL 2.0 switch lacks inherent cache
coherency, a node updating a data page in CXL memory cannot
invalidate the same page in another node’s CPU cache. Additionally,
updates made by a node may remain in its CPU cache and be flushed
to CXL memory in the background, preventing immediate visibility
of the changes to other nodes. To address this, we implement cache
coherency at the database level. In existing cloud-native multi-
primary databases [19, 33, 58], concurrent access to data pages is
managed through distributed page locks. Before reading from or
writing to a page, a node must acquire the page’s read or write
lock. We integrate our cache coherency scheme with this page
locking mechanism. When a node updates a page, it must hold the
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write lock for that page, preventing any other node from reading
or writing to it until the lock is released. Upon releasing the write
lock, the node performs a clflush operation on the page to flush the
modifications from the CPU cache to CXL memory, ensuring the
CXL memory contains the latest version of the page. Additionally,
when releasing the page lock, the buffer fusion server sets the
invalid flag for all nodes where the page is active. This flag update
is executed as a memory store operation on CXL memory, which
generally completes within a few hundred nanoseconds. If the
flag is set, it indicates that the page has been modified by another
node. To ensure cache coherency, the node must invalidate its
CPU cache for the page to avoid accessing outdated data. Since
concurrent nodes cannot update the page without holding the lock,
the cache lines of the page should already be clean. Therefore, a
clflush operation can be performed to invalidate the cache lines of
the page. Subsequent accesses will then fetch the data directly from
CXL memory, ensuring the node retrieves the latest version.

Background recycle. The CXL memory allocated for the DBP
is limited, so a background thread on the buffer fusion server is
enabled to recycle the least recently used pages, moving them from
the in-use list to the free list. Before recycling a page, the buffer
fusion server must ensure it is not in use by any database node by
acquiring an exclusive lock on the page. Once a page is recycled,
the buffer fusion server sets the removal flag for all nodes where
the page is active. This flag update is performed through a single
memory store operation on CXL memory, which typically takes
only a few hundred nanoseconds. When a node detects that a page’s
removal flag is set, it recognizes that the page has been removed by
the buffer fusion server and retrieves the page’s new CXL address
via RPC. Additionally, on the database side, a background thread
periodically scans the page metadata buffer to recycle metadata
entries whose removal flag is set.

Benefits. In this CXL-based data sharing solution, database nodes
can directly operate on CXL memory without needing to read en-
tire pages into local buffers for processing, as required in existing
RDMA-based solutions [58]. Our approach eliminates read/write
amplification, thereby significantly saving bandwidth, as thoroughly
discussed in previous sections. What’s more, when a page is up-
dated, only a clflush operation is needed to synchronize the modified
cache lines to CXL memory. Unlike RDMA-based solutions, which
transfer the entire page to the distributed buffer pool even when
only a small part of the page is updated, the CXL-based approach
synchronizes only the modified data, avoiding redundant writes
and reducing bandwidth usage and synchronization overhead.

4 Evaluation

4.1 Experimental setup

In this section, we evaluate PolarCXLMem within the commercial
cloud-native database, PolarDB [32], a widely deployed cloud-native
OLTP database on Alibaba Cloud. For the data-sharing scenario, we
integrate PolarCXLMem into the multi-primary version of PolarDB,
known as PolarDB-MP [58].

Test platform. For the CXL devices, we use the XConn XC50256,
the world’s first CXL 2.0 switch, as introduced in Section 2.3. In the
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experiment setup, the switch connects 8 DDR5 memory modules, to-
taling 2TB. To enable shared memory access for all hosts connected
to the CXL 2.0 switch, we configure the CXL-attached memory on
each host as a dax device in device direct access (devdax) mode us-
ing daxctl, allowing straightforward memory access through mmap.
Each physical machine is equipped with two Intel Xeon Platinum
8575C CPUs (2.8GHz) and runs CentOS-7. For comparison with
RDMA-based disaggregated memory, we connected these machines
via a 100Gbps Mellanox ConnectX-6 network, which is also the
standard configuration for PolarDB deployments on Alibaba Cloud.

Baselines. Since RDMA is widely adopted for disaggregated mem-
ory, it serves as the natural baseline for our evaluation. PolarDB
already supports RDMA-based disaggregated memory [13, 58], mak-
ing it a suitable baseline for comparison. Other RDMA-based disag-
gregated memory systems have a similar architecture and thus ex-
hibit similar performance trends when compared to PolarCXLMem.
For data sharing scenarios, since we implement PolarCXLMem in
PolarDB-MP [58], PolarDB-MP with RDMA-based memory sharing
serves as the baseline for these evaluations.

Workloads. We evaluate PolarCXLMem using three standard OLTP
benchmarks, Sysbench [29], TPC-C [18] and TATP [43], and adopt
their default configurations. The evaluation focuses on memory-
bound scenarios to investigate the impact of disaggregated memory
design in cloud-native databases. To ensure this focus, we configure
a large disaggregated memory to hold the entire dataset. Storage
1/0-bound scenarios are excluded from the discussion, as storage I/O
becomes the primary bottleneck in such cases, rendering the design
of disaggregated memory less impactful on overall performance.

4.2 PolarCXLMem pooling performance

RDMA-based disaggregated memory typically has significant read
and write amplification, leading to excessive RDMA bandwidth
consumption, as discussed in Section 2.2. In a cloud environment,
where each host has limited RDMA bandwidth but often runs mul-
tiple database instances, RDMA bandwidth becomes a potential
bottleneck for scalability. In this subsection, we test scenarios where
multiple database instances on a single host access remote mem-
ory, thoroughly comparing the performance of PolarCXLMem and
RDMA-based disaggregated memory. Each physical host in our
test environment is equipped with 192 vCPUs, and each database
instance is configured with 16 vCPUs, allowing a total of 12 in-
stances per host. For the RDMA-based setup, the local buffer size
is set to 30% of the disaggregated memory size, a commonly used
proportion for balancing latency and memory costs, while Polar-
CXLMem operates without a local buffer, reducing memory costs by
30%. To emulate a typical cloud environment that aims to maximize
resource utilization, we run diverse workloads on the 12 instances
to evaluate if the RDMA-based solution becomes a bottleneck and
whether PolarCXLMem can fully utilize the 192-vCPU machines.

Point-select. We first run Sysbench’s point-select workload with
438 threads to simulate high-concurrency scenarios, varying the
number of database instances on the host from 1 to 12. We mea-
sure the total throughput across all instances, average latency, and
RDMA/CXL bandwidth usage, as illustrated in Figure 7. In RDMA-
based systems, querying a single record (a few hundred bytes in
this workload) may induce the transfer of an entire page (16KB)
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Figure 9: Performance of Sysbench read-write workload.
from the disaggregated memory, as discussed in Section 2.2. This
results in significant read amplification, making RDMA bandwidth
the primary bottleneck. In contrast, PolarCXLMem processes data
directly on CXL memory without moving it to local memory, so
the CXL bandwidth in PolarCXLMem is only used for essential data
processing, preventing CXL bandwidth from becoming a bottleneck
in the point-select workload.

The left panel of Figure 7 shows that as the number of instances
increases from 1 to 12, PolarCXLMem ’s throughput scales propor-
tionally, reaching 3.6M QPS (queries per second). However, the
RDMA-based system’s throughput saturates at 3 instances, reach-
ing only 1.1M QPS due to bandwidth saturation. Latency trends in
the middle panel of Figure 7 align with throughput observations:
after reaching 3 instances, as the number of instances increases,
the RDMA-based system experiences a linear rise in latency due
to bandwidth saturation, while PolarCXLMem maintains stable la-
tency, with only a marginal rise, even as instances scale to 12. This
performance disparity stems from high read amplification and band-
width saturation in the RDMA-based system, which hits its limit at 3
instances, whereas PolarCXLMem avoids read amplification and has
no CXL bandwidth bottleneck. The right panel of Figure 7 further
confirms this, showing that RDMA bandwidth is fully utilized at 3
instances, reaching 11 GB/s, while PolarCXLMem’s CXL bandwidth
remains lower. In particular, with only 1 instance, neither system is
saturated; RDMA bandwidth measures 4.7 GB/s, which is 4X that
of PolarCXLMem, indicating a fourfold read amplification. Notably,
the RDMA-based system also requires additional DRAM bandwidth
for data processing.

Range-select. We then run Sysbench’s range-select workload
with 32 threads per instance. Range-select queries typically retrieve
a set of consecutive records, which are often stored adjacently. In
RDMA-based systems, when a page is read remotely, all records

range-select workloads do not incur the same high level of read am-
plification as point-select workloads. However, range-select queries
still require a high bandwidth for data reading, as they retrieve mul-
tiple records per query, making bandwidth a potential bottleneck.
As seen in Figure 8, the RDMA-based system reaches saturation at
4 instances, with RDMA bandwidth peaking at approximately 11
GB/s. Beyond this point, adding more instances does not increase
throughput, and latency rises linearly. In contrast, PolarCXLMem
benefits from CXL’s higher bandwidth, allowing its throughput to
continue increasing as more instances are added.

Read-write. Finally, we run Sysbench’s read-write workload,
which includes point-select, range-select, update, delete, and insert
operations, using 48 threads per instance. Operations like updating
or deleting an existing record, or inserting a new record, require
reading the target page before performing the operation. Thus, even
in this mixed read-write scenario, the RDMA-based system encoun-
ters bandwidth limitations. As shown in Figure 9, the RDMA-based
system saturates at 8 instances. Beyond this point, adding more
instances does not improve the total throughput due to RDMA band-
width constraints. However, PolarCXLMem ’s throughput contin-
ues to increase, benefiting from its lower bandwidth requirements.
With a single instance, the RDMA bandwidth is approximately 40%
higher than the CXL bandwidth, indicating significant read am-
plification in the RDMA-based system during this workload. It is
important to note that the RDMA bandwidth shown reflects only
data transfer bandwidth. Additional DRAM bandwidth used for
data processing in the RDMA-based system is not shown, as it is
challenging to measure directly. Conversely, PolarCXLMem ’s CXL
bandwidth accounts for all data transfer and processing demands.
Despite this, the RDMA-based system’s bandwidth consumption
still exceeds that of PolarCXLMem, underscoring the substantial
read/write amplification inherent in RDMA-based designs.

4.3 Recovery performance of PolarRecv

In this subsection, we evaluate the recovery performance of Polar-
Recv, which is built on PolarCXLMem. For this test, we run three
Sysbench workloads, read-only, read-write and write-only, and
randomly kill the database process to simulate a crash scenario. Fig-
ure 10 presents the recovery performance across different schemes
and workloads. The vanilla scheme represents the commonly used
approach that reads data pages from storage and applies redo logs
to recover lost data, while RDMA-based scheme refers to the recent
solutions that retrieve data from RDMA-based disaggregated mem-
ory, as widely adopted in existing RDMA-based systems [58, 64]. To
ensure a fair comparison, we adjust the workload pressure to make
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Figure 10: Comparison of recovery performance.

all three systems achieve similar throughput, resulting in equiva-
lent redo log sizes and similar amounts of updated data pages. This
setup allows us to compare recovery performance accurately, as
recovery time is closely tied to both the size of the redo logs and
the volume of lost data pages that need to be restored.

The left panel of Figure 10 depicts the recovery performance un-
der the read-only workloads. At the 60-second mark, the database
process was killed and immediately restarted. All three systems
recovered within 2 seconds, as no data recovery was required; only
in-memory data structures needed reinitialization. However, after
startup, PolarRecv quickly regained 90% of its pre-crash through-
put, whereas RDMA-based and vanilla schemes required 10 and
30 seconds, respectively, to warm up to comparable performance
levels. PolarRecv demonstrated a 5X and 15X speedup in warm-up
time compared to the RDMA-based and vanilla schemes, respec-
tively. This advantage is attributed to PolarRecv’s ability to directly
operate on disaggregated CXL memory. Following a crash, it con-
tinues operating on CXL memory without losing buffered data. In
contrast, the RDMA-based and vanilla schemes lose all buffered
data during a crash. Consequently, upon recovery, these systems
start with empty buffers and must retrieve data from storage or
disaggregated memory, resulting in considerable delays.

The middle panel of Figure 10 shows the recovery performance
under read-write workloads. The database process was killed and
restarted at the 60-second mark. Unlike the read-only workload, the
read-write workload involves a certain ratio of writes, resulting in
the loss of updated data upon crash. The lost data must be restored
during recovery. While PolarRecv can directly reuse the buffered
data from PolarCXLMem, partial pages that were in the middle of
updates still need to be recovered using redo logs, which results in a
recovery time of 8 seconds, slightly longer than that of the read-only
workload. In contrast, RDMA-based and vanilla schemes require 33
seconds and 110 seconds, respectively, to complete recovery. These
schemes must scan all redo logs, load the corresponding pages
into the local buffer, and apply the logs, significantly increasing
recovery time. PolarRecv demonstrates a 4.13X and 13.75X speedup
in recovery time compared to the RDMA-based and vanilla schemes,
respectively. After recovery, both vanilla and RDMA-based schemes
quickly achieve their pre-crash throughput. Their warm-up time is
shorter than in read-only workloads because some data is already
loaded into the buffer pool during the recovery process.

The recovery performance of the write-only workload is shown
in the right panel of Figure 10. The trend for the write-only work-
load is similar to that of the read-write workload but with more
significant recovery demands, as the write-only workload involves
more writes, leading to greater data loss after a crash and more
data must be restored. The RDMA-based and vanilla schemes take

73 seconds and 173 seconds, respectively, to complete the recovery,
significantly longer than their recovery times for the read-write
workload. However, PolarRecv requires only 15 seconds to finish
the recovery, achieving a 4.87x and 11.53x speedup compared to
the RDMA-based and vanilla schemes, respectively.

4.4 Data sharing performance

Finally, we evaluate the performance of PolarCXLMem in data-
sharing scenarios. We integrate PolarCXLMem into PolarDB-MP [58],
a multi-primary cloud-native database at Alibaba Cloud. In this
subsection, we compare the performance of PolarDB-MP using Po-
larCXLMem with the native PolarDB-MP utilizing RDMA for data
sharing. The evaluation is conducted on clusters with 8, 12, and 15
nodes, each configured with 16 vCPUs. For PolarCXLMem-based
PolarDB-MP, all nodes operate directly on shared CXL memory
without local buffer. In contrast, for RDMA-based PolarDB-MP,
each node maintains a local buffer sized at 30% of each node’s
accessed dataset size by default. In the 8-node cluster, the total
memory overhead of RDMA-based PolarDB-MP is 1.53% that of
PolarCXLMem-based PolarDB-MP. This overhead increases as the
number of nodes grows.

We adapted Sysbench to evaluate performance under varying
degrees of data sharing across nodes, following the configuration
methods from prior studies [19, 58]. In an N-node cluster setup,
tables were divided into N+1 groups. The first N groups were des-
ignated as private, with each node exclusively accessing the tables
within its assigned group. The final group was shared and accessible
by all nodes. The degree of sharing was controlled by a specified
percentage X, where X% of queries targeted the shared tables, while
the rest were directed to the private tables of each node.

Point-update. We begin our evaluation with Sysbench’s point-
update workload, where each transaction consists of 10 point-
update queries. We vary the percentage of shared data from 0%
to 100% and measure the total throughput and average latency,
as shown in Figure 11. In the left panel of Figure 11, the primary
vertical axis (left) represents the throughput of RDMA-based and
PolarCXLMem-based PolarDB-MP, displayed as distinct bar groups.
The secondary vertical axis (right) corresponds to a line plot that
shows the relative improvement of PolarCXLMem over RDMA, pro-
viding a direct performance comparison

At 0% data sharing, each node accesses only its private data,
and the disaggregated memory functions solely as a memory pool
without data sharing. In this scenario, PolarCXLMem achieves a
33% throughput improvement over RDMA, primarily due to its
ability to eliminate read/write amplification and extra overhead,
as discussed in Section 4.2. As the percentage of shared data in-
creases, the throughput of both systems decreases due to the data
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contention; however, PolarCXLMem ’s relative improvement over
RDMA grows, benefiting from its efficient data-sharing scheme.
In the RDMA-based system, shared data access incurs additional
RDMA bandwidth usage, which competes with private data access.
RDMA bandwidth becomes a significant bottleneck. Additionally,
in RDMA-based PolarDB-MP, releasing a page lock requires flush-
ing the modified page to shared memory. Even a small modification
triggers a full-page flush, prolonging the lock release time. This de-
lay prevents other nodes from acquiring the lock promptly, further
degrading performance. As the shared data percentage increases
from 0% to 40%, PolarCXLMem ’s advantage grows, reaching a 62%
throughput improvement at 40% data sharing. However, as shared
data increases beyond 40%, lock contention intensifies. High con-
tention leads to threads transitioning into sleep states, frequent
thread context switches, and increased overhead. This contention
becomes a new bottleneck as the shared data percentage rises. Con-
sequently, from 60% to 100% shared data, PolarCXLMem ’s relative
improvement gradually declines. Despite heavy lock contention at
100% data sharing, PolarCXLMem still achieves a 27% throughput
improvement over RDMA. The right panel of Figure 11 illustrates
latency, following a trend similar to throughput. As the shared
data increases up to 40%, PolarCXLMem achieves greater latency
reduction. However, beyond 40% shared data, the latency reduction
gradually diminishes with further increases in shared data.

Read-write. We then run the Sysbench read-write workload with
varying percentage of shared data in setups with 8 and 12 nodes, as
shown in Figure 12. Since latency follows a similar trend to through-
put, we omit the latency results here to save space. The 0% shared
data case, representing pooling scenarios, is excluded here as it was
discussed earlier. The read-write workload exhibits a pattern similar
to the point-update workload. Between 20% and 60% shared data,
as the percentage of shared data increases, PolarCXLMem shows
growing improvement, leveraging its efficient data synchroniza-
tion mechanism. PolarCXLMem achieves its peak improvement of
68.2% in the 8-node cluster and 154.4% in the 12-node cluster at
60% shared data. The higher improvement in the 12-node setup is
attributed to the higher synchronization demands compared to the
8-node setup, where PolarCXLMem effectively handles intensive
data sharing. However, as data contention becomes severe (e.g., at
100% shared data), page-locking bottlenecks begin to limit system
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Figure 13: Breakdown analysis of PolarCXLMem with Sys-
bench point-update workload.

throughput, reducing PolarCXLMem ’s relative advantage. Despite
this, PolarCXLMem still provides significant throughput improve-
ments of 34.01% and 126.09% in the 8-node and 12-node clusters,
respectively, even at 100% shared data.

Breakdown analysis. To further investigate PolarCXLMem’s ad-
vantages in data sharing, we configured RDMA-based PolarDB-MP
with varying local buffer pool (LBP) sizes, ranging from 10% to 100%
of each node’s accessed dataset. Particularly, LBP-100% represents
a setup where the local buffer can hold a node’s entire dataset,
meaning all communication overhead between database nodes and
disaggregated memory is due solely to data synchronization. We
conducted tests using the Sysbench point-update workload on an
8-node cluster, with the results shown in Figure 13. At 20% data shar-
ing, where data synchronization is relatively light, RDMA-based sys-
tems exhibit greater sensitivity to LBP size. PolarCXLMem achieves
2.14X the throughput of RDMA LBP-10%. When the LBP size in-
creases to 70%, RDMA achieves 94% of PolarCXLMem’s throughput
but at the cost of significantly higher memory overhead, 2.24X that
of PolarCXLMem. As the percentage of shared data increases, the
need for data synchronization grows, making PolarCXLMem ’s ad-
vantages more apparent. Although overall throughput decreases
due to data contention, PolarCXLMem ’s relative improvement con-
tinues to rise. Furthermore, as data synchronization demands in-
crease, the impact of LBP size on RDMA performance diminishes.
Notably, even with LBP-100% in RDMA, PolarCXLMem maintains its
performance edge. For instance, at 40% shared data, PolarCXLMem
improves throughput by 16.8% to 104.58% compared to RDMA con-
figurations with LBP sizes ranging from 10% to 70%. Especially, at
100% shared data, all RDMA configurations converge to similar
performance levels, constrained by lock contention and synchro-
nization overhead. However, PolarCXLMem still delivers a 42.22%
and 22.48% throughput improvement compared to RDMA LBP-10%
and LBP-100%, respectively, demonstrating its superior efficiency
and minimal memory overhead in shared data scenarios.

TPC-C and TATP. Finally, we run the TPC-C and TATP workloads
on a 15-node cluster, with each node configured with 16 vCPUs.
These workloads are inherently well-partitioned, with minimal
data sharing. In TPC-C, only about 10% of transactions involve
cross-warehouse operations, requiring limited data synchroniza-
tion. In TATP, there is no data sharing at all. Consequently, the
performance improvement of PolarCXLMem primarily stems from
the same reasons as those in the memory pooling scenarios, as
discussed in Section 4.2. For this test, we configured the local buffer
pool (LBP) size in RDMA-based PolarDB-MP to 10% and 30% of the
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node’s accessing dataset, while PolarCXLMem continued to operate
without an LBP. The disaggregated memory is configured large
enough to store the whole dataset since we focus on the perfor-
mance of disaggregated memory, avoiding the storage I/O impact.
This configuration results in significantly higher memory over-
head for RDMA-based PolarDB-MP compared to PolarCXLMem.
Table 3 presents the throughput, latency, and relative total memory
overhead (normalized to PolarCXLMem) for both workloads.

Table 3: Performance of TPC-C and TATP workloads

RDMA RDMA
10%1BP 307 Lpp | ClrCXLMem
TpmC (M) 1.11 1.65 1.92
TPC-C  P95. latency (ms) 44.18 29.34 25.32
Memory overhead 1.1X 1.3% 1X
QPS (M) 2.35 2.77 3.61
TATP Avg. latency (ms) 1.27 1.07 0.82
Memory overhead 1.1X 1.3% 1X

For the TPC-C workload, under the RDMA-10%LBP configura-
tion, the LBP hit ratio is about 93%. However, LBP misses lead to
additional overhead from flushing modified pages to or reading
required pages from disaggregated memory. This results in signifi-
cant write/read amplification and excessive RDMA bandwidth con-
sumption, ultimately degrading performance. In this configuration,
PolarCXLMem achieves a 72.3% improvement in throughput while
reducing memory overhead by 10% compared to RDMA-10%LBP.
Increasing the LBP size to 30% raises the LBP hit ratio to 97.3%, nar-
rowing PolarCXLMem ’s relative improvement to 16.36%. However,
the 30% LBP configuration incurs a 30% memory overhead com-
pared to PolarCXLMem. For the TATP workload, which involves
no data sharing, the improvement is less pronounced than in TPC-
C. PolarCXLMem achieves a 53.6% throughput improvement over
RDMA-10%LBP. Even with a 30% LBP, which incurs a 30% memory
overhead, PolarCXLMem still improves throughput by 30.3%.

To summarize, PolarCXLMem demonstrates notable advantages
in both performance and cost efficiency. By significantly reducing
write/read amplification, it saves bandwidth and boosts through-
put. Additionally, PolarCXLMem operates without a local buffer
pool, leading to substantially lower memory overhead and elimi-
nating RDMA-related overhead compared to RDMA-based systems.
These findings position PolarCXLMem as a cost-effective solution
for cloud-native databases, delivering substantial performance im-
provements while minimizing memory and bandwidth expenses.

5 Related work

Disaggregated memory. Recently, disaggregated memory has
gained popularity both for general-purpose applications [4, 7, 23]
and for specific use cases, such as cloud-native databases [25, 61, 64].
Solutions like Infiniswap [23], Remote Region [4] and Leap [7]
implement disaggregated memory at the Linux kernel level for
general usage but often suffer significant performance degradation
when applied directly to cloud-native databases [63]. Consequently,
dedicated disaggregated memory systems tailored to cloud-native
databases have emerged. Systems such as LegoBase [64], PolarDB
Serverless [13] and PilotDB [46] design disaggregated memory to
store buffered pages based on RDMA. Although moving some hot
pages to remote memory improves performance, these solutions

Xinjun Yang et al.

remain limited by read/write amplification and RDMA driver con-
straints [45, 55]. Other works [35, 37, 38, 51, 52, 60] leverage RDMA-
based disaggregated memory for efficient indexing or transaction
optimization. However, these designs typically require extensive
modifications to existing systems and remain largely experimental,
requiring significant efforts to deployment in commercial databases.
Unlike these approaches, this paper focuses on using emerging CXL
devices to design disaggregated memory that overcomes the lim-
itations of RDMA-based architectures for cloud-native databases.
Furthermore, the proposed design minimizes modifications to ex-
isting systems and has been implemented in a widely deployed
commercial cloud-native database, demonstrating practicality, cost
efficiency, and significant performance benefits.

CXL-based systems. Since the emergence of CXL, several works
have explored its applications in existing systems. Two studies [24,
31] present CXL use cases for databases but lack detailed eval-
uations. Tang [49] examines CXL performance and provides a
cost-benefit analysis. Systems like Remp [53], TPP [41], Pond [34]
and DirectCXL [22] design CXL-based memory disaggregation for
general-purpose use. Minseon Ahn [5, 6] investigates CXL memory
for in-memory databases, while HydraRPC [39] leverages CXL for
implementing an RPC system. ReCXL [36] and DeepMemoryDL [9]
explore CXL’s potential in Al scenarios, and CXL-ANNS [26] uti-
lizes CXL for approximate nearest neighbor search. However, these
studies do not focus on cloud-native databases, where CXL-based
disaggregated memory can be employed for database buffer pools,
instance recovery, and data sharing.

Fast recovery. LegoBase [64], PilotDB [46], PolarDB-MP [58] and
GaussDB [33] have explored using disaggregated memory to speed
up recovery by reducing storage I/O operations. However, these
systems still require scanning all redo logs and completing the full
recovery process. PolarDB Serverless [65] proposes seamless mi-
gration to quickly start data instances, but it focuses on intentional
migration scenarios. Additionally, other works [30, 40, 44] propose
checkpoint algorithms for fast recovery in in-memory databases,
while PLIN [66] achieves instant recovery using NVM. SiloR [67]
and PACMAN [57] enable fast recovery through parallelism. Unlike
these approaches, this paper enables instant recovery with disag-
gregated CXL memory, which can restore buffered data directly
from CXL memory without the need for log application.

6 Conclusion

This paper presents PolarCXLMem, a CXL switch-based disaggre-
gated memory for cloud-native databases, supporting both memory
pooling and sharing. Based on studies of CXL switch characteris-
tics, the design eliminates the tiered local-remote memory structure
prevalent in RDMA-based systems, instead placing the entire buffer
pool directly on CXL memory. By avoiding the read/write ampli-
fication inherent in RDMA-based disaggregated memory, Polar-
CXLMem achieves superior performance and reduced costs. Build-
ing on PolarCXLMem, we propose PolarRecv, an instant recovery
scheme that significantly enhances database recovery performance.
Additionally, to facilitate PolarCXLMem ’s deployment in multi-
primary databases, we design a novel data synchronization protocol
that markedly outperforms existing RDMA-based solutions.
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